ALICE TPC

Danilo Vranic on behalf of the ALICE TPC Collaboration 20th of October, 2010

ALICE TPC

D. Vranic

ALICE TPC is a large volume Time Projection Chamber with overall 'conventional' lay-out but designed for extreme high track density expected in Pb-Pb collisions at LHC energy.

GAS CHOICE

Ne because: less material, faster ion mobility (less space charge effect), low diffusion Quencher: CO_2 (minimized ageing)+ N₂.

Active volume: 90 m³ Final gas mixture: Ne-CO₂-N₂: 85.7% - 9.5% - 4.8% (N₂ added to improve quenching at high gain) Cool gas - low diffusion Non-saturated drift velocity u temperature stability and homogeneity ≤ 0.1 K Gain $\sim 10^4$

With this gas mixture we need 400V/cm in the field cage!

ALICE TPC Field cage is made of free standing aluminized Mylar strips

More complicate system but very stable and reliable for high drift voltages.

 $25 \mu \text{ Mylar}$

Macrolon tube

The ALICE field cage consists of two parts; a field cage vessel with a set of coarsely segmented guard rings and finely segmented field cage which is located inside the field cage vessel.

For temperature stability and homogeneity ≤ 0.1 K

Leakless cooling system including FC Resistor rod

To monitor the temperature distribution

~500 PT1000 sensors are mounted both inside and outside of the gas volume

RESISTOR ROD WITH WATER COOLING – OUTER PART

October 19, 2010

RESISTOR ROD - MECHANICAL AND ELECTRICAL ARRANGEMENT

READ-OUT CHAMBERS DESIGN

MWPCs with pad-readout with extra optimization for high rate and high track density.

Inner Chamber

READOUT CHAMBERS

ONE OF THE 36 SECTORS

October 19, 2010

FRONT END ELECTRONICS AND READOUT

The signals from 557 568 pads are passed to Front-End Cards (FEC) via 7cm long flexible Kapton cables.

FEE is designed to cope with a signal occupancy as high as 50%. Furthermore the extremely large raw data volume (750MB/event) requires the zero suppression already in the FEE in order to fit events at the foreseen event rate into the DAQ bandwidth (216 links at 160 MB/s)

Commissioning

- Mean noise level:
 - 0.7 ADC count (700 e)
 - Designed 1 ADC count (1000 e)
- Data volume of empty event:
 - ZS event: ~ 30kB
 - non-zero suppressed (ZS): ~ 700MB
- Typical size of the event with data:
 - 0.1 1 MB (p p)
 - 360 kB TPC @ 7 TeV
 - ~ 30 MB (Pb Pb, dN/dy = 2000 -> expected)

Commissioning

Gain calibration using Kr

Determine gain for each pad

- 3 different HV settings (gains)
- High statistics: several 10⁸ Kr events
- Accuracy of peak position: << 1% (design: 1.5%)

-> recent development:

Equalization on the sector-voltage level

OROC GAIN EQUALIZATION

V_{max}=1607V V_{min}=1591V

October 19, 2010

Material budget

Agreement between MC and DATA: 5.5% in $|\eta| < 0.9$

October 19, 2010

D. Vranic

Space point resolution

- Depends on:
 - Drift length
- In r ϕ direction: $\sigma_y = 300 800 \,\mu m$

In drift direction: σ_7 = 300 - 800 μ m

- gain & drift velocity calibration very good
 - now working on local, static field distortions (mechanical tolerances/deformations)
 - track distortions reduced by factor 4-5 (< 500 μ m close to Field Cage)
 - required to go to higher momenta

Momentum resolution

- High momentum tracks
 - Cosmic muon tracks treated independently in two halves of TPC
 - Comparison of p_{τ} at vertex gives resolution
 - Statistics: ~ 5×10^6 events
- Low momentum tracks
 - Deduced from the width of K⁰_s mass peak
- Status (end of 2009) : $(\sigma_{pT}/p_{T})^{2} = (0.01)^{2} + (0.007p_{T})^{2}$
- Achieved: ~ 7 % @ 10 GeV/c

 ~ 1 % below 1 GeV/c

Current pass2 resolution: 4% at 10 GeV

dE/dx resolution - cosmics

Allows particle identification up to 50 GeV/c

- Statistics: 8.3× 10⁶ cosmic tracks in 2008
- Design goal: 5.5 %
- Measured: < 5 %

High-multiplicity event

dE/dx resolution - pp

STABILITY

For 10 kHz pp interaction rate very stable operation For 100 kHz pp investigation presently ongoing

note: comparing number of tracks/s 100 Hz PbPb collisions equals 15 kHz pp collisions for dN/dy = 2000

CONCLUSION

- ALICE TPC works stably during p-p data taking
- Main calibration was done already in 2009
- Fine tuning calibration techniques bring us to the performance at the design specifications

THE TPC IS READY FOR Pb-Pb collisions

J. Alme et al. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, **NIM A 622** (2010) 316-367

October 19, 2010