Tests of GEANT4 using the CALICE calorimeters

David Ward

 \blacklozenge Electromagnetic particles (µ, e) were used to understand behaviour of the CALICE calorimeters.

Here focus on hadronic showers + comparison with GEANT4 simulations.

- CALICE calorimeters are highly granular (aimed at Particle Flow)
 - Measure shower profiles with high resolution
 - Determine interaction point accurately
 - Internal structure of shower (e.g. MIP-like track segments)
 - Software compensation
 - PFA tests using data

IWLC 2010 Geneva Oct.'10

CALICE test beams

- Major beam tests, using π, μ, e
 beams:
- 2006-7 SiW ECAL + AHCAL + TCMT
 @ CERN
- 2008 SiW ECAL + AHCAL + TCMT
 @ Fermilab
- 2008-9 Scint-W ECAL + AHCAL + TCMT @ Fermilab
- 2010 DHCAL + TCMT @ Fermilab
- ✤ 2010 W HCAL @ CERN

Data and MC

- Show results from 2007 CERN test beam campaign
 - Si-W ECAL 24 X₀, ~1 λ_{int} ; 30 layers of 1x1 cm² Si pads.
 - Fe-Scintillator analogue HCAL, ~4 λ_{int}; 38 layers of (mainly) 3x3 cm² scintillator tiles with SiPM readout.
 - Fe-Scintillator Tail Catcher + Muon Tracker (TCMT); ~5 λ_{int} ; 16 layers of 5 cm scintillator strips.
- Muon beams for calibration; electron beams for testing detector performance.
- Focus here on π^{\pm} beams in range 8-80 GeV key range for jets at LC.
- Compare with GEANT4 using several hadronic physics lists:
 - LHEP, QGSP_BERT, QGSP_BERT, QGSP_FTFP_BERT, FTFP_BERT, FTFP_BERT_TRV, QGSP_BIC, QGS_BIC, FTF_BIC
- Version 4.9.3 (December 2009) unless otherwise stated; some comparisons based on 4.9.2 at this stage.

IWLC 2010 Geneva Oct.'10

"Tracking calorimetry"

 Can identify shower start with good precision.

 Exponential distribution of start points in the AHCAL

 \Rightarrow infer effective interaction length.

Serves as a cross-section check on Fe in GEANT4.

All models OK, apart from LHEP.

Ward

Similarly - probability of not interacting in ECAL

As identified through MIP-like energy deposition in ECAL

Serves as a test of the GEANT4 cross-sections on Tungsten Most physics lists within 1-2% of data Most conspicuous outlier is LHEP

IWLC 2010 Geneva Oct.'10

Energy in ECAL (QGSP_BERT physics list)

IWLC 2010 Geneva Oct.'10

Energy deposited in ECAL

Show trend of <E(MC)>/<E(Data)> vs beam energy

Steps seen as Geant4 makes transitions between models
 Most models within 10% of data, but tend to overestimate at high energies

Closest overall seems to be FTF_BIC

LHEP is a striking outlier, diverging significantly at high energies

HCAL energy resolution + linearity

IWLC 2010 Geneva Oct.'10

Transverse shower profile in ECAL

IWLC 2010 Geneva Oct.'10

David Ward

Tails of transverse profiles - ECAL

Most models underestimate shower width at high energies. FTF lists fit data best

IWLC 2010 Geneva Oct.'10

David Ward

CAMBRIDGE

Mean shower radius in HCAL

Most physics lists give too small shower radius QGSC_CHIPS close

IWLC 2010 Geneva Oct.'10

95% containment radius in HCAL

(a)

(b)

Most physics lists underestimate tail. But QGSC_CHIPS overestimates. FTF_BIC closest.

IWLC 2010 Geneva Oct.'10

David Ward

12

Transverse profiles in AHCAL

Most physics lists give too small shower radius and underestimate tail.
QGSC_CHIPS gets radius right, but shape is all wrong.
FTF_BIC best in the far tail.
Important not to put too much emphasis on any single observable; no physics list gets everything right.

(f)

CERN 2007, 15 GeV #

Data

GEANT A.9.2 USED

13

ensity [MIPs/mm²/eve 친 ਰੁ

iergy der Veran

Longitudinal shower profile

- The observed longitudinal shower shape reflects a convolution of the distribution of shower starting points with the true shower shape.
- High granularity allows us to identify the shower start to within ±1 layers typically.
- Can then measure shower longitudinal development w.r.t. this point.
- Look at ECAL first. Restrict study to showers starting in first 10 layers of ECAL, so that almost 1 λ_{int} in the ECAL is available to develop the shower. And ~20X₀ so that photons in initial interaction can shower fully.

IWLC 2010 Geneva Oct.'10

Shower profiles w.r.t. interaction point

12 GeV data compared to 8 physics lists

In simulation, can record hit energies associated with each particle species. Note that "mesons" (π , μ , K), e[±] and protons have distinctive shower profiles. No physics list completely fits the data.

IWLC 2010 Geneva Oct.'10

Shower profiles w.r.t. interaction point

Compare two physics lists at 4 energies

Three main components can be observed:

•Short range component (mainly protons; nuclear spallation)

- •Electromagnetic component
- Longer range components; mesons + MIP-like protons

IWLC 2010 Geneva Oct.'10

Focus on different regions of the shower:

IWLC 2010 Geneva Oct.'10

David Ward

17

... continued ...

Layers 30-50 Mainly hadron dominated Most models within ~10% of data QGSP models slightly favoured

IWLC 2010 Geneva Oct.'10

Likewise in HCAL (18 GeV)

Requiring showers to start in first 5 layers of HCAL

Continued...

HCAL not so discriminating between components, but similar effects seen to ECAL. LHEP especially disfavoured; also QGS(P)_BIC less good in HCAL. Others roughly equally successful.

IWLC 2010 Geneva Oct.'10

David Ward

CAMBRIDGE

Track segments

Identify tracks of MIP-like hits in the HCAL. LHEP, QGS_BIC again disfavoured

AMBRIDGE

IWLC 2010 Geneva Oct.'10

PandoraPFA tests

Superimpose two showers from data with various transverse separations

- One 10 or 30 GeV π^-
- One 10 GeV "neutral" π^- without its incident track segment
- Run PandoraPFA and look at reconstruction of the neutral cluster
- Look at offset and resolution (i.e. confusion) w.r.t. expected energy
- Neither physics list perfect, but QGSP_BERT certainly better then LHEP

Software compensation

- $e/\pi \neq 1$ in CALICE calorimeters
- Several approaches to software compensation studied
- One example shown above
- Basic idea is that e/m parts of showers are denser, so use weighting of hits to energy density
- ✤ Typically achieve relative improvement of ~10-20% in energy resolution.
- Improvement is modelled reasonably well, but not perfectly, by typical GEANT4 models

EANT A.9.2 USE

CAMBRIDGE

Summary

- Just presented a few results from CALICE here relating to validation of GEANT4. More in talks in Calorimetry session.
- ECAL and HCAL have complementary merits:
 - ECAL has higher granularity + Tungsten absorber. More effective in discrimination between $e/\pi/p$ components of shower. But only samples first λ_{int} of the shower.
 - ♦ HCAL (+TCMT) detect ~ full shower energy ⇒ linearity, resolution studies; tails of showers; sensitive to neutron component.
- In general, GEANT4 performs pretty well, to the 10% level, for most observables, and using most of the physics lists studied.
- A few broad conclusions:
 - LHEP is clearly the least recommendable physics list (useful if you want an outlier).
 - QGSP_BERT (favoured by LHC GPD calorimetry) is a pretty reasonable choice. But in GEANT4.9.3 there is some indication that the FTFbased models perform slightly better. None is perfect.
 - As usual, it depends what you care most about...
 - Other interesting possibilities, such as use of the CHIPS model, are coming along.

Backup slides

IWLC 2010 Geneva Oct.'10

SiW ECAL

IWLC 2010 Geneva Oct.'10

Analogue HCAL

Highly Granular AHCAL Prototype

AHCAL size $\sim 1m^3$ materialsSteel -Scintillatorlayers38interaction length $5.3\lambda_I$ x-yscannableimpact angle0-30 deg

channels 7608 cell size (cm²) 3x3 to 12x12 light yield ~13 pixel/MIP S/N ~10

6

27

IWLC 2010 Geneva Oct.'10

Physics lists in GEANT4.9.3

All are hybrids of several models; random selection between alternatives in the transition region in order to smooth behaviour.

IWLC 2010 Geneva Oct.'10

David Ward

CAMBRIDGE

Some electron results in ECAL

29

Longitudinal profiles in HCAL (8 GeV)

IWLC 2010 Geneva Oct.'10

David Ward

CAMBRIDGE

Longitudinal profiles in HCAL (8 GeV)

