

Positron polarization at the ILC: RDR vs. SB2009

Sabine Riemann, DESY Zeuthen

International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010

ilc

Positron polarisation = upgrade option for ILC, CLIC. Nevertheless, the undulator based ILC design will provide polarized positrons from beginning (~22%...35%). Up to now no clear strategy has been mediated what to do with this polarized positrons

Outline

- Why positron polarization ?
- Positron polarization
 - in RDR
 - in SB2009
- Physics goal of low positron polarization ?
 What to do with low positron polarization ?
- Summary

FLC – the precision machine

Goal of a Future Linear Collider: Observe, determine and precisely reveal the structure of the underlying physics model Needed:

- High energy
- High luminosity
- → Experimental flexibility ⇔ be prepared for the unexpected

The electron beam of a future LC will be polarized.

Lessons from LEP/SLD \Leftrightarrow sensitivity to parity violating couplings

- Unpolarized beams (LEP, 17x10⁶ Z events) \rightarrow A_{FB} $\delta sin^2 \theta_{eff} = 1.2x10E-3$
- Polarized beams (SLC, 5x10^5 Z events) \rightarrow A_{LR} $\delta sin^2 \theta_{eff} = 1.2x10E-3$

What about polarized positron?

- positron polarization is not the Baseline Design of ILC or CLIC
- Physics goals are summarized in Moortgat-Pick et al.,

Phys.Rept.460(2008)131

ILC Baseline Machine (RDR)

Physics between 200 GeV and 500 GeV Electrons: P > 80% Energy stability and precision below 0.1%

Luminosity: Year 1-4: $L_{int} = 500 \text{ fb}^{-1}$: 1. year $10\% \rightarrow L_{int} \approx 50 \text{ fb}^{-1}$ 2. year $30\% \rightarrow L_{int} \approx 150 \text{ fb}^{-1}$ 3. Year $60\% \rightarrow L_{int} \approx 300 \text{ fb}^{-1}$ 4. year 100% → L_{int} ≈ 500 fb⁻¹ → expected statistics: few 10^4 ee \rightarrow HZ at 350 GeV (mH \approx 120 GeV) 10⁵ $ee \rightarrow tt$ at 350 GeV 5.10⁵ (1.10⁵) ee \rightarrow qq (µµ) at 500 GeV ee → WW at 500 GeV 106 → statistical cross section uncertainties at per-mille level !! (after 1st year ~ 1% level) $\Delta \sigma \propto \frac{1}{\sqrt{N}} \oplus \frac{\Delta L}{L} \oplus \frac{\Delta E}{E} \oplus \frac{\Delta P}{P} \longrightarrow O(10^{-3})$

e+e- initial states

116

s-channel processes

$$\sigma^{\text{meas}} = \sigma_0 \left(-P_{e-}P_{e+} \right) + A_{LR}P_{eff}$$

$$P_{eff} = \frac{P_{e-} - P_{e+}}{1 - P_{e-}P_{e+}}$$

$$\Leftrightarrow \qquad \begin{array}{l} \pm P_{e+}, \pm P_{e-} \rightarrow \\ \text{enhancement} \\ \text{or suppression} \\ \text{of } \sigma_{\text{ii}} \end{array}$$

Polarized initial states: $e^+e^- \rightarrow \mu^+\mu^-$

R-parity violating SUSY (spin-0) or Z' (spin-1)?

S. Riemann

s-channel processes

- Cross section measurements: enhancement of SM contributions by factor 1-P_e-P_{e+}
 - e.g. LC as Higgs factory (Higgsstrahlung) <> enhancement of effective luminosity
 - (±80%,±60%) ⇔ 1.48 → δ_{stat} improved by 22% (±80%,±34%) ⇔ 1.27 → δ_{stat} improved by 13% (±80%,±22%) ⇔ 1.18 → δ_{stat} improved by 8%
- Effective polarization P_{eff}
 - Higher than e- polarization, but this becomes less important for P(e-) >90%
 - Uncertainty of effective polarization is substantially smaller, $\delta P_{eff} < \delta P_{e}$.

Positron polarization increases effective polarization:

 $\mathbf{P}_{\rm eff} = \frac{\mathbf{P}_{\rm e^{-}} - \mathbf{P}_{\rm e^{+}}}{1 - \mathbf{P}_{\rm e^{-}} \mathbf{P}_{\rm e^{+}}}$

P_{e}/P_{e+}	0.6	0.34	0.22
0.8	0.95	0.90	0.87
0.9	0.97	0.95	0.93

For comparison: first LC studies: (60%,40%) → P_{eff} =0.8

• Decrease of error on P_{eff} (error propagation)

(80%,60%) ⇔ δP_{eff} = 0.25 δP_{e-}

 $\begin{array}{l} (80\%,22\%) \Leftrightarrow \delta\mathsf{P}_{\mathsf{eff}} = 0.75 \; \delta\mathsf{P}_{\mathsf{e}} \\ (80\%,34\%) \Leftrightarrow \delta\mathsf{P}_{\mathsf{eff}} = 0.50 \; \delta\mathsf{P}_{\mathsf{e}} \end{array}$

 $\delta P_{e} / P_{e} = \delta P_{e+} / P_{e+} = 0.25\%$

→ δP/P ~**O(10**⁻³)

(see ILC-NOTE-2008-047)

S. Riemann

• Single W production \Leftrightarrow vertex depends only on P(e+)

Transverse polarization

$$\frac{d\sigma}{d\Omega} \propto \sigma \operatorname{Congitudinal} \operatorname{P}_{\perp}^{+} P_{\perp}^{-} \cos 2\varphi \sin \theta \cdot Q$$

- sensitivity to new physics (CP violation, graviton)
- does NOT work with e- polarization only
- e+ polarization $60\% \rightarrow 22\% \Leftrightarrow$ effect is decreased by factor 3

IWLC 2010

IIL

WW production

suppression of t-channel contribution by chosing the polarization of the initial stat

Simultaneous fitting of TGC's and polarization (e+ and e-) \rightarrow see talk by Ivan Marchesini

ILC undulator based e+ source is polarized

P(e+) is useful – but is it indispensable for a future linear collider?

- Up to now we have not yet obtained new signatures that cannot be studied without positron polarization
- new physics signals are expected at the LHC; they can be interpreted with substantially higher precision if positron polarization is available

→ distinction of new physics models

 Z factory "GigaZ" (10^9 Z bosons) is impossible without e+ polarization

LC Design may not prevent a polarized positron beam

ILC Positron Source Layout

Yield of Polarized Positrons at ILC

Helical undulator, no photon collimator

SB2009

 \rightarrow e+ polarization ~22%

ъ

RDR design \rightarrow e+ polarization ~34%

SB2009 Proposal Document:

distance undulator \Leftrightarrow target: 400m

Is P_{e+} = 22 % sufficient or annoying for physics?

Comparison RDR \Leftrightarrow SB2009: e+ polarization

Figure 4.3.6: Positron polarisation vs electron energy for the RDR and SB2009 in the baseline configuration. Much higher polarisation levels are achievable in both layouts following a simple upgrade of the positron source.

undulator length \Leftrightarrow better positron capture using flux concentrator than quarter wave transformer to achieve high photon yield

S. Riemann

ILC positron polarization for physics

Need:

- Spin rotation upstream e+ damping ring (longit. → vertical), and downstream turnaround (vertical → longit.)
- 2. Need facility for fast helictity reversal to achieve the desired initial states (+ -, -+)
 - Undulator source ⇔ '+' or '-' circularly polarization of photons depending on direction of helical windings
 → Fast kicker with 2 spin rotation lines (K. Moffeit et al., SLAC TN-05-045)
- 3. e+ Compton polarimeters at IP (desired up- and downstream)
 - But also zero positron polarization has to be confirmed

No ILCpositron polarization ?

- 1. Destroy the 22%÷34% positron polarization
 - Need facility to depolarize e+ beam (damping ring is NOT sufficient!)
 - Need precision polarimeter to confirm zero polarization at IP
- 2. Use planar undulator
 - Planar instead of helical undulator → transversely polarized photons → unpolarized e+ (e-) beam
 - Photon yield of helical undulator is factor 1.5...2 times higher than that of planar undulator
- 3. Conventional positron source (unpolarized e- to target)
 - Intense beam is a huge challenge for positron production target
 - Several e+ targets beam stability at the 0.1% level????
 - Polarization upgrade using helical undulator difficult
 - Reduced physics goal of the LC although we can do it much better!!

• Alternative:

Compton backscattering (neither at CLIC nor at ILC foreseen as baseline)

- ILC time structure ⇔ special effort
- Feasibilty

Conclusion:

- Undulators are widely used,
- proof-of principle experiment (E166) confirmed method
- ILC undulator prototyp is constructed,
- → Should use low e+ polarization (>30%) for physics
- ➔ If SB2009 should be baseline, polarization upgrade as soon as possible (desired almost from beginning)

- Positron polarization
 - is important for the physics goal
 - will be available from the beginning if the helical undulator is baseline design

Summary

- should be used for physics, also if pol upgrade (photon collimator) necessary
- Milestones:

IIL

- ILC: Technical Design Report end 2012
- CLIC: CDR in 2011
- e+ polarization has to be covered in these reports
- Still to do for ILC and CLIC:
 - Realistic scenarios with polarization and consequences for physics precision
 - Realistic spin tracking from start to end
 - Depolarization effects at IP
 - Demonstrate target reliability
 - Demonstrate that the flux concentrator will work (higher e+ yield)
- ... and detection of signals beyond the SM

Positron polarization needs more attention from machine and physics groups \rightarrow to be prepared for the unexpected

Thank you !

S. Riemann

	 -	-	 -	-	-			-	 		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
•	•	•	 •	•	•	• •	 	 •		 	•	•	•	•	•	•		•	•	•	•	•	•	•	• •	 	•	

Polarized Positrons from Helical Undulator

 Rotating dipole field in the transverse planes

• Ribbon-wire wound in a double helix

- Electrons follow a helical path
- Emission of circularly polarized radiation

Opening angle of photon beam $\sim 1/\gamma$ (first harmonic)

- Polarization sign is determined by undulator (direction of the helical field)
- # photons ~ undulator length
- Photon yield in a helical undulator is about 1.5...2 higher than that in a planar undulator (for the parameters of interest) See also Mikhailichenko, CLNS 04/1894

S. Riemann

Location of sources at the ILC

IWLC 2010

S. Riemann

Comparison of RDR and SB2009 e+ source parameters

Parameter	RDR	SB2009	Units	
Positrons per bunch at the IP	2 x 10 ¹⁰	1 to 2 x 10 ¹⁰		
		(see Figure 4.3.3 for		
		details)		
Bunches per pulse	2625	1312		
Pulse repetition rate	5	5 (125 to 250GeV)	Hz	
		2.5 (50 to 125GeV)		
Positron energy (DR Injection)	5	5	GeV	
DR transverse acceptance	0.09	0.09	m-rad	
DR energy acceptance	±0.5	±0.5	%	
Electron drive beam energy	150	125 to 250	GeV	
Electron energy loss in undulator	3	0.5 to 4.9	GeV	
		(see Figure 4.3.4 for		
		details)		
Required additional electron	3	4.1	GeV	
linac overhead				
Undulator period	11.5	11.5	mm	
Undulator strength	0.92	0.92		
Active undulator length	147 (210 after	231 (maximum, not	m	
	polarisation	all used when		
	upgrade)	>150GeV)		
Field on axis	0.86	0.86	Т	
Beam aperture	5.85	5.85	mm	
Photon Energy (1 st harmonic)	10	1.1 (50 GeV) to	MeV	
		28 (250 GeV)		
Photon beam power	131	102 at 150 GeV	kW	
		(less at all other		
		energies)		
Target material	Ti – 6%Al – 4%V	Ti – 6%Al – 4%V		
Target thickness	14	14	mm	
Target power adsorption	8	8	%	

Positron polarization

Positron spectra

IIL

RDR Undulator, distance undulator - target ~500m

- \rightarrow Average positron polarization (~34% for RDR design)
- With photon collimator upstream the target:
 - \rightarrow increase of polarization
 - \rightarrow decrease of positron yield \rightarrow longer undulator

Positron Target

 Material: Titanium alloy Thickness: 0.4 X₀ (1.4 cm)

- Incident photon spot size on target: $\sigma \sim 1.7$ mm (rms) (RDR)
 - ~ 1.2 mm (SB2009)
- Power deposition in target: 8% → 10.4 kW (RDR); <8 kW (SB2009) But peak energy deposition density is higher for SB2009 design
- Rotate target to reduce local thermal effects and radiation damage → 2m diameter target wheel, 2000 rpm
- Issues to be resolved and the solutions validated:
 - Stress in target material, pressure shock wave impact on target lifetime
 - rotating vacuum seals to be confirmed suitable

OMD: Increases capture efficiency from 10% to as high as 40%

- Adiabatic Matching Device (AMD):
 - Tapered B field from ~5 T at the target to 0.5 T in 50 cm

- Capture efficiency >30%
- Rotating target immersed in B field ⇔ eddy currents
- Eddy current experiment @ Cockroft Institute
 - → expect 8 kW at 2000 rpm
 - → heat load on target substantially increased

Optical Matching Device (2)

- Flux Concentrator (FC)
 - Flux concentrator reduces magnetic field on target but lower capture efficiency ~22%
 - RDR design with FC
 - pulsed flux concentrator (used at SLD):
 - ILC needs ~ 1ms pulse width flat-top
 - LLNL: Design and prototype (budget):

Optical Matching Device (3)

Quarter Wave Transformer (QWT)
 – QWT is a save solution

2nd Coil

- but capture efficiency is ~1
 SB2009 design with QWT
- → Length of helical undulator 231m
- upgrade to P(e+) = 60% would make the undulator so long that photon powers become worrying and electron energy loss very high
- → better to use a flux concentrator

IIL

suppression of t-channel contribution

Suppression factors for t-channel in comparison to unpolarized beams

P _e -	P _{e+}	0	-0.6	-0.3	-0.22
0.8		0.2	0.08	0.14	0.16
0.9		0.1	0.04	0.07	0.08