Renormalization in the Complex MSSM and ILC Implications

Sven Heinemeyer, IFCA (CSIC, Santander)

Geneva, 10/2010

based on collaboration with T. Fritzsche, H. Rzehak, C. Schappacher, G. Weiglein

- 1. Introduction & The bigger picture
- 2. Renormalization schemes
- 3. Analysis of the renormalization schemes
- 4. Numerical results in the favored scheme
- 5. Conclusions & Outlook

1. Introduction

 $\underline{\tilde{t}/\tilde{b}}$ sector of the MSSM: (scalar partner of the top/bottom quark) Stop, sbottom mass matrices ($X_t = A_t - \mu^*/\tan\beta$, $X_b = A_b - \mu^*\tan\beta$):

$$\begin{split} \mathbf{M}_{\tilde{t}}^{2} &= \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + DT_{t_{1}} & m_{t}X_{t}^{*} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + DT_{t_{2}} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_{1}}^{2} & 0 \\ 0 & m_{\tilde{t}_{2}}^{2} \end{pmatrix} \\ \mathbf{M}_{\tilde{b}}^{2} &= \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + DT_{b_{1}} & m_{b}X_{b}^{*} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} + DT_{b_{2}} \end{pmatrix} \xrightarrow{\theta_{\tilde{b}}} \begin{pmatrix} m_{\tilde{b}_{1}}^{2} & 0 \\ 0 & m_{\tilde{b}_{2}}^{2} \end{pmatrix} \end{split}$$

mixing important in stop sector (also in sbottom sector for large tan β) soft SUSY-breaking parameters A_t, A_b also appear in $\phi - \tilde{t}/\tilde{b}$ couplings

$$SU(2)$$
 relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

 $\Rightarrow \text{ relation between } m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_{\tilde{b}}$

Effects of complex parameters in the Higgs sector:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\widetilde{g}}$: gluino mass
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1(=\phi))$$

with

$$M_{h_3} > M_{h_2} > M_{h_1}$$

important decay modes of stops

. .

- $-A_t$ and A_b directly enter the vertex
- possible source of Higgs bosons at the LHC/ILC

- important decay modes of stops
- $-A_t$ and A_b directly enter the vertex
- possible source of Higgs bosons at the LHC/ILC

 \Rightarrow higher-order corrections important!

- important decay modes of stops
- $-A_t$ and A_b directly enter the vertex
- possible source of Higgs bosons at the LHC/ILC

 \Rightarrow higher-order corrections important!

 \Rightarrow simultaneous renormalization of stop and sbottom sector required!

- important decay modes of stops
- $-A_t$ and A_b directly enter the vertex
- possible source of Higgs bosons at the LHC/ILC

 \Rightarrow higher-order corrections important!

⇒ simultaneous renormalization of stop and sbottom sector required!
⇒ with on-shell properties for external particles!

- important decay modes of stops
- $-A_t$ and A_b directly enter the vertex incl. complex phases!
- possible source of Higgs bosons at the LHC/ILC

 \Rightarrow higher-order corrections important!

 \Rightarrow simultaneous renormalization of stop and sbottom sector required! \Rightarrow including complex phases!

The bigger picture: stop decays in the cMSSM

 \Rightarrow to get BRs right \Rightarrow all decays needed

 \Rightarrow (nearly) all sectors of the cMSSM enter as external particles

 \Rightarrow (nearly) all sectors of the cMSSM have to be renormalized simultaneously

The bigger picture: stop decays in the cMSSM

- \Rightarrow to get BRs right \Rightarrow all decays needed
- \Rightarrow (nearly) all sectors of the cMSSM enter as external particles
- \Rightarrow (nearly) all sectors of the cMSSM have to be renormalized simultaneously
- \Rightarrow nearly ready
- \Rightarrow focus here on stop/sbottom sector

2. Renormalization schemes

Generic parameter and field renormalization for scalar quarks:

$$\begin{split} \mathbf{D}_{\tilde{q}} &= \mathbf{U}_{\tilde{q}} \,\mathbf{M}_{\tilde{q}} \,\mathbf{U}_{\tilde{q}}^{\dagger} \quad (\tilde{q} = \tilde{t}, \tilde{b}) \\ \mathbf{U}_{\tilde{q}} \,\mathbf{M}_{\tilde{q}} \,\mathbf{U}_{\tilde{q}}^{\dagger} \to \mathbf{U}_{\tilde{q}} \,\mathbf{M}_{\tilde{q}} \,\mathbf{U}_{\tilde{q}}^{\dagger} + \mathbf{U}_{\tilde{q}} \,\delta \mathbf{M}_{\tilde{q}} \,\mathbf{U}_{\tilde{q}}^{\dagger} = \begin{pmatrix} m_{\tilde{q}_{1}}^{2} & Y_{q} \\ Y_{q}^{*} & m_{\tilde{q}_{2}}^{2} \end{pmatrix} + \begin{pmatrix} \delta m_{\tilde{q}_{1}}^{2} & \delta Y_{q} \\ \delta Y_{q}^{*} & \delta m_{\tilde{q}_{2}}^{2} \end{pmatrix} \\ \delta \mathbf{M}_{\tilde{q}_{12}} &= U_{\tilde{q}_{11}}^{*} U_{\tilde{q}_{12}} (\delta m_{\tilde{q}_{1}}^{2} - \delta m_{\tilde{q}_{2}}^{2}) + U_{\tilde{q}_{11}}^{*} U_{\tilde{q}_{22}} \delta Y_{q} + U_{\tilde{q}_{12}} U_{\tilde{q}_{21}}^{*} \delta Y_{q}^{*} \\ \begin{pmatrix} \tilde{q}_{1} \\ \tilde{q}_{2} \end{pmatrix} \to \left(\mathbbm{1} + \frac{1}{2} \delta \mathbf{Z}_{\tilde{q}} \right) \begin{pmatrix} \tilde{q}_{1} \\ \tilde{q}_{2} \end{pmatrix} \quad \text{with} \quad \delta \mathbf{Z}_{\tilde{q}} = \begin{pmatrix} \delta Z_{\tilde{q}_{11}} & \delta Z_{\tilde{q}_{12}} \\ \delta Z_{\tilde{q}_{21}} & \delta Z_{\tilde{q}_{22}} \end{pmatrix} \end{split}$$

 \rightarrow employ the widely used on-shell renormalization

$$\delta m_t = \frac{1}{2} \widetilde{\operatorname{Re}} \left\{ m_t \left[\Sigma_t^L(m_t^2) + \Sigma_t^R(m_t^2) \right] + \left[\Sigma_t^{SL}(m_t^2) + \Sigma_t^{SR}(m_t^2) \right] \right\}$$
$$\delta m_{\tilde{t}_i}^2 = \widetilde{\operatorname{Re}} \Sigma_{\tilde{t}_{ii}}(m_{\tilde{t}_i}^2) \qquad (i = 1, 2)$$

$$\delta Y_t = \frac{1}{2} \widetilde{\text{Re}} \left\{ \Sigma_{\tilde{t}_{12}}(m_{\tilde{t}_1}^2) + \Sigma_{\tilde{t}_{12}}(m_{\tilde{t}_2}^2) \right\} \qquad [W. \text{ Hollik, H. Rzehak '03]}$$

This defines the counter term for A_t :

$$\delta A_t = \frac{1}{m_t} \Big[U_{\tilde{t}_{11}} U_{\tilde{t}_{12}}^* (\delta m_{\tilde{t}_1}^2 - \delta m_{\tilde{t}_2}^2) + U_{\tilde{t}_{11}} U_{\tilde{t}_{22}}^* \delta Y_t^* + U_{\tilde{t}_{12}}^* U_{\tilde{t}_{21}} \delta Y_t \\ - (A_t - \mu^* \cot\beta) \, \delta m_t \Big] + (\delta \mu^* \cot\beta - \mu^* \cot^2\beta \, \delta \tan\beta)$$

(with $\delta\mu$ from chargino/neutralino sector, $\delta \tan\beta$ from Higgs sector)

Field renormalization for on-shell squarks (\tilde{t} , \tilde{b} , ...):

Diagonal Z factors:

the real part of the residua of propagators is set to unity:

$$\widetilde{\operatorname{Re}}\frac{\partial\widehat{\Sigma}_{\widetilde{q}_{ii}}(k^2)}{\partial k^2}\Big|_{k^2=m_{\widetilde{q}_i}^2}=0 \qquad (i=1,2)$$

yielding

$$\operatorname{Re}\delta Z_{\tilde{q}_{ii}} = -\widetilde{\operatorname{Re}} \frac{\partial \Sigma_{\tilde{q}_{ii}}(k^2)}{\partial k^2} \Big|_{k^2 = m_{\tilde{q}_i}^2} \qquad \operatorname{Im} \delta Z_{\tilde{q}_{ii}} = 0 \qquad (i = 1, 2)$$

Off-diagonal Z factors:

no transition from one squark to the other occurs:

$$\widetilde{\operatorname{Re}}\widehat{\Sigma}_{\tilde{q}_{12}}(m_{\tilde{q}_1}^2) = 0 \qquad \widetilde{\operatorname{Re}}\widehat{\Sigma}_{\tilde{q}_{12}}(m_{\tilde{q}_2}^2) = 0$$

yielding

$$\delta Z_{\tilde{q}_{12}} = +2 \frac{\widetilde{\mathsf{Re}} \Sigma_{\tilde{q}_{12}}(m_{\tilde{q}_2}^2) - \delta Y_q}{(m_{\tilde{q}_1}^2 - m_{\tilde{q}_2}^2)} \qquad \delta Z_{\tilde{q}_{21}} = -2 \frac{\widetilde{\mathsf{Re}} \Sigma_{\tilde{q}_{21}}(m_{\tilde{q}_1}^2) - \delta Y_q^*}{(m_{\tilde{q}_1}^2 - m_{\tilde{q}_2}^2)}$$

SU(2) relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

"LL" soft SUSY-breaking term for $\tilde{q} = {\tilde{t}, \tilde{b}}$:

$$M_{\tilde{Q}_L}^2(\tilde{q}) = |U_{\tilde{q}_{11}}|^2 m_{\tilde{q}_1}^2 + |U_{\tilde{q}_{12}}|^2 m_{\tilde{q}_2}^2 - M_Z^2 c_{2\beta} (T_q^3 - Q_q s_W^2) - m_q^2$$

Keeping SU(2) relation at the one-loop level leads to a shift in the soft SUSY-breaking parameters

[A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod, Y. Yamada '97, '98] [A. Djouadi, P. Gambino, S.H., W. Hollik, C. Jünger, G. Weiglein '98]

$$M_{\tilde{Q}_L}^2(\tilde{b}) = M_{\tilde{Q}_L}^2(\tilde{t}) + \delta M_{\tilde{Q}_L}^2(\tilde{t}) - \delta M_{\tilde{Q}_L}^2(\tilde{b})$$

with

$$\delta M_{\tilde{Q}_{L}}^{2}(\tilde{q}) = |U_{\tilde{q}_{11}}|^{2} \delta m_{\tilde{q}_{1}}^{2} + |U_{\tilde{q}_{12}}|^{2} \delta m_{\tilde{q}_{2}}^{2} - U_{\tilde{q}_{22}} U_{\tilde{q}_{12}}^{*} \delta Y_{q} - U_{\tilde{q}_{12}} U_{\tilde{q}_{22}}^{*} \delta Y_{q}^{*} - 2m_{q} \delta m_{q} + M_{Z}^{2} c_{2\beta} Q_{q} \delta s_{W}^{2} - (T_{q}^{3} - Q_{q} s_{W}^{2})(c_{2\beta} \delta M_{Z}^{2} + M_{Z}^{2} \delta c_{2\beta})$$

\rightarrow under control

Renormalizations of the b/\tilde{b} sector in the complex MSSM:

scheme	$m_{\tilde{b}_{1,2}}$	m_b	A_b	Y_b	name
analogous to the t/\tilde{t} sector: "OS"	OS	OS		OS	RS1
" $m_b, A_b \overline{DR}$ "	OS	DR	DR		RS2
" $m_b, Y_b \overline{DR}$ "	OS	DR		DR	RS3
" $m_b \ \overline{DR}, \ Y_b \ OS$ "	OS	DR		OS	RS4
" $A_b \ \overline{DR}$, $ReY_b \ OS$ "	OS		DR	Re Y_b : OS	RS5
" A_b vertex, Re Y_b OS"	OS		vertex	Re Y_b : OS	RS6

"--- " = dependent parameter

 \Rightarrow often very involved analytical dependences

- \rightarrow more combinations possible
 - ...also tested
 - ... upcoming results remain unchanged

OS renormalization:

$$\delta m_{\tilde{b}_i}^2 = \widetilde{\text{Re}} \Sigma_{\tilde{b}_{ii}}(m_{\tilde{b}_i}^2)$$
 (*i* = 1, 2)

Renormalization of the bottom mass:

OS renormalization:

$$\delta m_b = \frac{1}{2} \widetilde{\mathsf{Re}} \left\{ m_b \left[\Sigma_b^L(m_b^2) + \Sigma_b^R(m_b^2) \right] + \left[\Sigma_b^{SL}(m_b^2) + \Sigma_b^{SL}(m_b^2) \right] \right\}$$

DR renormalization:

$$\delta m_b = \frac{1}{2} \widetilde{\mathsf{Re}} \left\{ m_b \left[\Sigma_b^L(m_b^2) + \Sigma_b^R(m_b^2) \right]_{\mathsf{div}} + \left[\Sigma_b^{SL}(m_b^2) + \Sigma_b^{SL}(m_b^2) \right]_{\mathsf{div}} \right\}$$

Renormalization of A_b :

DR renormalization: analogous to A_t :

$$\begin{split} \delta A_b &= \frac{1}{m_b} \Big[U_{\tilde{b}_{11}} U_{\tilde{b}_{12}}^* \left(\widetilde{\text{Re}} \Sigma_{\tilde{b}_{11}} (m_{\tilde{b}_1}^2) |_{\text{div}} - \widetilde{\text{Re}} \Sigma_{\tilde{b}_{22}} (m_{\tilde{b}_2}^2) |_{\text{div}} \right) \\ &+ \frac{1}{2} U_{\tilde{b}_{12}}^* U_{\tilde{b}_{21}} \left(\widetilde{\text{Re}} \Sigma_{\tilde{b}_{12}} (m_{\tilde{b}_1}^2) |_{\text{div}} + \widetilde{\text{Re}} \Sigma_{\tilde{b}_{12}} (m_{\tilde{b}_2}^2) |_{\text{div}} \right) \\ &+ \frac{1}{2} U_{\tilde{b}_{11}} U_{\tilde{b}_{22}}^* \left(\widetilde{\text{Re}} \Sigma_{\tilde{b}_{12}} (m_{\tilde{b}_1}^2) |_{\text{div}} + \widetilde{\text{Re}} \Sigma_{\tilde{b}_{12}} (m_{\tilde{b}_2}^2) |_{\text{div}} \right)^* \\ &- \frac{1}{2} (A_b - \mu^* \tan \beta) \, \widetilde{\text{Re}} \Big\{ m_b \Big[\Sigma_b^L (m_b^2) + \Sigma_b^R (m_b^2) \Big]_{\text{div}} \\ &+ \Big[\Sigma_b^{SL} (m_b^2) + \Sigma_b^{SR} (m_b^2) \Big]_{\text{div}} \Big\} \Big] + \delta \mu^* |_{\text{div}} \tan \beta + \mu^* \, \delta \tan \beta \end{split}$$

Vertex renormalization:

via
$$\widetilde{\operatorname{Re}}\widehat{\Lambda}(0, m_{\tilde{b}_1}^2, m_{\tilde{b}_1}^2) + \widetilde{\operatorname{Re}}\widehat{\Lambda}(0, m_{\tilde{b}_2}^2, m_{\tilde{b}_2}^2) \stackrel{!}{=} 0$$

OS renormalization:

$$\delta Y_b = \frac{1}{2} \widetilde{\operatorname{Re}} \left\{ \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_1}^2) + \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_2}^2) \right\}$$

DR renormalization:

$$\delta Y_b = \frac{1}{2} \widetilde{\operatorname{Re}} \left\{ \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_1}^2) |_{\operatorname{div}} + \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_2}^2) |_{\operatorname{div}} \right\}$$

 $\operatorname{Re}Y_b$ OS renormalization

$$\mathsf{Re}\delta Y_b = \frac{1}{2}\mathsf{Re}\left\{\widetilde{\mathsf{Re}}\Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_1}^2) + \widetilde{\mathsf{Re}}\Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_2}^2)\right\}$$

Existing analyses all in the real MSSM:

- [A. Bartl et al. '98] [L. Jin, C. Li '01]
 "OS" used for stop and sbottom decays
 (→ implemented into SDecay)
- [C. Weber, K. Kovarik, H. Eberl, W. Majerotto '07] similar to " m_b , $A_b \overline{\text{DR}}$ " used for Higgs decays to sfermions
- [A. Arhrib, R. Benbrik '04] an "OS" scheme used for $\tilde{f} \to \tilde{f}' V$
- [*Q. Li, L. Jin, C. Li '02*] an "OS" scheme with running m_t , m_b , A_t , A_b used for $\tilde{t}_2 \rightarrow \tilde{t}_1 \phi$
- [*H. Eberl et al. '10*] pure DR scheme used for stop decays
- [A. Brignole, G. Degrassi, P. Slavich and F. Zwirner '02]
 [S.H., W. Hollik, H. Rzehak, G. Weiglein '04]
 real "A_b vertex, ReY_b OS" used for two-loop Higgs self-energies

Numerical scenarios:

Scen.	$M_{H^{\pm}}$	$m_{\tilde{t}_2}$	μ	A_t	A_b	M_1	<i>M</i> ₂	M_3
S1	150	600	200	900	400	200	300	800
S2	180	900	300	1800	1600	150	200	400

Scen.	tan eta	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	
S1	2	293.391	600.000	441.987	447.168	
	20	235.073	600.000	418.824	439.226	
	50	230.662	600.000	400.815	449.638	
S2	2	495.014	900.000	702.522	707.598	
	20	445.885	900.000	678.531	695.180	
	50	442.416	900.000	628.615	697.202	

Problems of non- A_b renormalizations:

$$\delta A_b|_{\text{fin}} = \frac{1}{m_b} \left[U_{\tilde{b}_{11}} U_{\tilde{b}_{12}}^* \left(\delta m_{\tilde{b}_1}^2 - \delta m_{\tilde{b}_2}^2 \right) \right]_{\text{fin}} + \dots$$

\Rightarrow too large contributions to A_b are induced

Problems of m_b - A_b renormalizations:

$$\delta Y_b = \frac{U_{\tilde{b}_{11}}U_{\tilde{b}_{21}}}{|U_{\tilde{b}_{11}}|^2 - |U_{\tilde{b}_{12}}|^2} \left(\delta m_{\tilde{b}_1}^2 - \delta m_{\tilde{b}_2}^2\right) + \dots, \quad \delta Z_{\tilde{b}_{21}} = -2 \frac{\mathsf{Re}\Sigma_{\tilde{b}_{21}}(m_{\tilde{b}_2}^2) - \delta Y_b}{m_{\tilde{b}_1}^2 - m_{\tilde{b}_2}^2}$$

 \Rightarrow divergence for $|U_{\tilde{b}_{11}}| = |U_{\tilde{b}_{12}}|$ reached for tan $\beta \approx 37$ in S1:

Problems of non- m_b renormalizations:

" $A_b \ \overline{\text{DR}}, \ \text{Re}Y_b \ \text{OS"} \ (\text{RS5})$: (rMSSM) $\delta m_b = -\frac{m_b \delta A_b + \delta S}{(A_b - \mu \tan \beta)}$

 \Rightarrow divergent for $A_b = \mu \tan \beta$

" A_b vertex, Re Y_b OS" (RS6): (rMSSM)

$$\delta m_b = \frac{\delta S + F}{\mu \left(\tan \beta + 1 / \tan \beta \right)}$$

 \Rightarrow no problem in the rMSSM!

" A_b vertex, Re Y_b OS" (RS6): (cMSSM: $U_- = U_{\tilde{b}_{11}}U_{\tilde{b}_{22}}^* - U_{\tilde{b}_{12}}U_{\tilde{b}_{21}}^*$) $\frac{1}{\delta m_b} \sim 4\,\mu\,\tan^3\beta \left[\operatorname{Re}U_-\left(|U_{\tilde{b}_{11}}|^2 - |U_{\tilde{b}_{12}}|^2\right) + \operatorname{Im}U_-\frac{4\,m_b}{m_{\tilde{b}_1}^2 - m_{\tilde{b}_2}^2}\operatorname{Im}\left(U_{\tilde{b}_{11}}^*U_{\tilde{b}_{12}}A_b\right)\right]$

 \Rightarrow divergences appear depending on $\phi_{A_b}!$

"A_b vertex, ReY_b OS" (RS6): (cMSSM:
$$U_{-} = U_{\tilde{b}_{11}}U_{\tilde{b}_{22}}^* - U_{\tilde{b}_{12}}U_{\tilde{b}_{21}}^*$$
)

$$\frac{1}{\delta m_b} \sim 4\,\mu\,\tan^3\beta \left[\operatorname{Re}U_{-}\left(|U_{\tilde{b}_{11}}|^2 - |U_{\tilde{b}_{12}}|^2\right) + \operatorname{Im}U_{-}\frac{4\,m_b}{m_{\tilde{b}_1}^2 - m_{\tilde{b}_2}^2}\operatorname{Im}\left(U_{\tilde{b}_{11}}^*U_{\tilde{b}_{12}}A_b\right)\right]$$

 \Rightarrow divergences appear depending on $\phi_{A_b}!$

one counterterm is a "dependent" quantity

⇒ no scheme can be identified that shows "good" behavior over the full cMSSM parameter space

one counterterm is a "dependent" quantity

⇒ no scheme can be identified that shows "good" behavior over the full cMSSM parameter space

Most "robust" behavior:

- RS2: " m_b , $A_b \overline{\text{DR}}$ "
 - \Rightarrow problems only for maximal sbottom mixing
- RS6: " A_b vertex, Re Y_b OS"
 - \Rightarrow problems depending on ϕ_{A_b}

one counterterm is a "dependent" quantity

 \Rightarrow no scheme can be identified that shows "good" behavior over the full cMSSM parameter space

Most "robust" behavior:

- RS2: " m_b , $A_b \overline{\text{DR}}$ "
 - \Rightarrow problems only for maximal sbottom mixing
- RS6: " A_b vertex, Re Y_b OS"
 - \Rightarrow problems depending on ϕ_{A_b}

All problems could be avoided in a pure \overline{DR} scheme \Rightarrow not suited for external stops and sbottoms

one counterterm is a "dependent" quantity

⇒ no scheme can be identified that shows "good" behavior over the full cMSSM parameter space

Most "robust" behavior:

- RS2: " m_b , $A_b \overline{\text{DR}}$ "
 - \Rightarrow problems only for maximal sbottom mixing
- RS6: " A_b vertex, Re Y_b OS"
 - \Rightarrow problems depending on ϕ_{A_b}

All problems could be avoided in a pure $\overline{\text{DR}}$ scheme \Rightarrow not suited for external stops and sbottoms

 \Rightarrow we choose RS2: " m_b , $A_b \overline{DR}$ " as our "preferred" scheme

Calculation of partial widths:

- all diagrams created with FeynArts
 - \rightarrow model file with all counterterms in the cMSSM
- including all soft/hard QED/QCD diagrams
- further evaluation with FormCalc
- Dimensional REDuction
- all UV and IR divergences cancel
- results will be included into FeynHiggs (www.feynhiggs.de)
- \rightarrow example plots will focus on $\mathsf{BR}(\tilde{t}_2 \rightarrow \tilde{t}_1 h_1)$

 \rightarrow TT

Feynman diagrams for $\tilde{t}_2 \rightarrow \tilde{t}_1 h_i$

- including Z-A or G-A transition contribution on the external Higgs boson leg
- including all soft/hard QED/QCD diagrams

Feynman diagrams for $\tilde{t}_2 \rightarrow \tilde{b}_i H^+$

- including $W^+ H^+$ or $G^+ H^+$ transition contribution on the external Higgs boson leg
- including all soft/hard QED/QCD diagrams

Numerical scenarios:

Scen.	$M_{H^{\pm}}$	$m_{\tilde{t}_2}$	$m_{\tilde{t}_1}$	$m_{\tilde{b}_2}$	μ	A_t	A_b	M_1	M_2	M_{3}
S1	150	650	0.4 $m_{\tilde{t}_2}$	$0.7 m_{\tilde{t}_2}$	200	900	400	200	300	800
S2	180	1200	$0.6 m_{\tilde{t}_2}$	$0.8 m_{\tilde{t}_2}$	300	1800	1600	150	200	400

Scen.	aneta	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	
S1	2	260.000	650.000	305.436	455.000	
	20	260.000	650.000	333.572	455.000	
	50	260.000	650.000	329.755	455.000	
S2	2	720.000	1200.000	769.801	960.000	
	20	720.000	1200.000	783.300	960.000	
	50	720.000	1200.000	783.094	960.000	

S1: $e^+e^- \rightarrow \tilde{t}_2\tilde{t}_1 \rightarrow \tilde{t}_1\phi \tilde{t}_1$ possible at the ILC(1000)

S1: $e^+e^- \rightarrow \tilde{t}_2\tilde{t}_1 \rightarrow \tilde{t}_1\phi \tilde{t}_1$ possible at the ILC(1000)

S1, S2: all decay modes are open

For $m_{\tilde{t}_1} \approx 600$ GeV:

 $\sigma(e^+e^- \rightarrow \tilde{t}_2 \tilde{t}_1) \approx 1.5~{\rm fb}^{-1}$

 $1 \text{ ab}^{-1} \Rightarrow \sim 1500 \tilde{t}_2$

ILC will permit to measure the BRs close to the statistical uncertainty BR = $30\% \Rightarrow$ determination with 5% accuracy

(Worse accuracies for higher $m_{\tilde{t}_2}$ values . . .)

[PRELIMINARY]

$\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_1)$: dependence on $m_{\tilde{t}_2}$

\Rightarrow one-loop corrections under control

 \Rightarrow size of BR highly scenario dependent

 $\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_1)$: dependence on $m_{\tilde{t}_2}$

[PRELIMINARY]

 \Rightarrow one-loop corrections under control

 \Rightarrow size of BR highly scenario dependent

 \Rightarrow full one-loop corrections crucial for ILC (and even LHC)

[PRELIMINARY]

$\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_1)$: dependence on ϕ_{A_t}

\Rightarrow one-loop corrections under control

 \Rightarrow size of BR highly scenario dependent

$\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_1)$: dependence on ϕ_{A_t}

[PRELIMINARY]

 \Rightarrow one-loop corrections under control

 \Rightarrow size of BR highly scenario dependent

⇒ full one-loop corrections crucial for ILC (and even LHC)

5. Conclusions & Outlook

- \tilde{t} and \tilde{b} sector important for collider phenomenology
- Simultaneous renormalization of both sectors crucial for higher-order corrections on-shell properties for external squarks!
 - $\Rightarrow \tilde{t}/\tilde{b}$ renormalization in the cMSSM

 \Rightarrow simultaneous renormalization of all sectors in the cMSSM

- Sbottom sector: six (+X) schemes defined and tested analytical deficiencies found in all schemes most "robust": RS2: "m_b, A_b DR" ← preferred scheme RS6: "A_b vertex, ReY_b OS"
- <u>Numerical analysis:</u> RS2: " m_b , A_b DR" shows very robust and stable behavior over nearly all (tested) cMSSM parameter space

Evaluation of $\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_i)$ and $\mathsf{BR}(\tilde{t}_2 \rightarrow \tilde{t}_1 h_i)$

- \Rightarrow sizable effects in Γ and BR
- \Rightarrow have to be included for ILC analyses (and possibly for LHC)

Back-up

$$m_b^{\overline{\text{MS}}}(m_b) = 4.2 \text{ GeV}$$
$$m_b^{\overline{\text{MS}}}(\mu_R) = \Phi^{\text{SM},3-\text{loop}}(m_b^{\overline{\text{MS}}}(m_b))$$

An "on-shell" mass is derived from the $\overline{\text{MS}}$ mass via

$$m_b^{\text{OS}} = m_b^{\overline{\text{MS}}}(\mu_R) \left[1 + \frac{\alpha_s^{\overline{\text{MS}}}(\mu_R)}{\pi} \left(\frac{4}{3} + 2 \ln \frac{\mu_R}{m_b^{\overline{\text{MS}}}(\mu_R)} \right) \right]$$

The $\overline{\text{DR}}$ bottom quark mass is calculated iteratively

$$m_b^{\overline{\text{DR}}} = \frac{m_b^{\text{OS}}(1 + \Delta_b) + \delta m_b^{\text{OS}} - \delta m_b^{\overline{\text{DR}}}}{1 + \Delta_b}$$
$$\Delta_b = \frac{2\alpha_s(m_t)}{3\pi} \tan\beta M_3^* \mu^* I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2) + \dots$$

The bottom quark mass of a special renormalization scheme:

$$m_b = m_b^{\overline{\text{DR}}} + \delta m_b^{\overline{\text{DR}}} - \delta m_b$$

 $\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_2)$: dependence on tan β

 \Rightarrow one-loop corrections under control for all tan β values

\Rightarrow one-loop corrections under control for all A_b values

 $\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_2)$: dependence on μ (tan $\beta = 20$)

 \Rightarrow one-loop corrections under control (but many thresholds)

 $\Gamma(\tilde{t}_2 \rightarrow \tilde{t}_1 h_2)$: dependence on ϕ_{A_b} (tan $\beta = 20$)

 \Rightarrow one-loop corrections under control except of sharp peaks at $|U_{\tilde{b}_{11}}| \approx |U_{\tilde{b}_{12}}|$