SLOOPS

An automatic program for full one-loop calculations in the SM/MSSM

Guillaume CHALONS LAPTH, Annecy-le-Vieux

The SloopS team : Fawzi BOUDJEMA, Guillaume DRIEU LA ROCHELLE, Sun Hao (LAPTH, Annecy-le-Vieux) Nans BARO (ITTK, RWTH Aachen University) <u>Andreë SEMENOV</u> (JINR Dubna)

IWLC 2010

NEED FOR PRECISE THEORETICAL PREDICTIONS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.0975 < \Omega_{DM} h^2 < 0.1223$ (10% precision)
- PLANCK : 2% precision

PRECISION MEASUREMENTS

CHALONS Guillaume

Automatic calculations in the SM/MSSM : The SloopS project

COSMOLOGY AND PARTICLE PHYSICS

RELIC DENSITY IN THE STANDARD SCENARIO

$$\Omega_{DM}h^2\simeq rac{3 imes 10^{-27}cm^3s^{-1}}{\langle\sigma(\chi\chi o SM)v
angle}$$

COSMOLOGY AND PARTICLE PHYSICS

RELIC DENSITY IN THE STANDARD SCENARIO

$$\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o SM) v
angle}$$

PRECISION

- Need for precise theoretical predictions w.r.t experimental measurements.
- Precision needed at the level of $\sigma \Rightarrow$ One-loop calculations (at least).
- Reconstruction of fundamental underlying parameters at LHC and LC.
- Radiative corrections must be under control to be able to constrain the cosmological underlying scenario.
- What precision required at colliders and theory to constrain cosmology?

A PARADIGM OF BSM MODELS : SUSY AND THE MSSM

16 18

SUPERSYMMETRY AND THE MSSM

COMPLICATIONS

- Not observed yet, neither the Higgs boson...
- \mathcal{L}_{soft} unkown.
- Lots of free parameters ($\simeq 105$).
- Calculations become extremely tedious and involved.

SUPERSYMMETRY AND THE MSSM

COMPLICATIONS

- Not observed yet, neither the Higgs boson...
- \mathcal{L}_{soft} unkown.
- Lots of free parameters ($\simeq 105$).
- Calculations become extremely tedious and involved.

BEYOND LEADING ORDER IN SUSY

- At LO : m_h < m_Z but no Higgs found !
- LEP Bound on Higgs mass $| m_h > 114 \text{GeV} |$
- At higher orders : Higgs mass can get large corrections.
- Generically SUSY processes get large radiative corrections.
- Calculations become even more complicated...

SUPERSYMMETRY AND THE MSSM

COMPLICATIONS

- Not observed yet, neither the Higgs boson...
- \mathcal{L}_{soft} unkown.
- Lots of free parameters (\simeq 105).
- Calculations become extremely tedious and involved.

BEYOND LEADING ORDER IN SUSY

- At LO : m_h < m_Z but no Higgs found !
- LEP Bound on Higgs mass $| m_h > 114 \text{GeV} |$
- At higher orders : Higgs mass can get large corrections.
- Generically SUSY processes get large radiative corrections.
- Calculations become even more complicated...

RADIATIVE CORRECTIONS ARE IMPORTANT

AUTOMATION NEEDED

CHALONS Guillaume

AUTOMATIC TOOL FOR ONE-LOOP CALCULATIONS : SLOOPS

- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- Modularity between different renormalisation schemes.
- Non-linear gauge fixing.
- Checks : results UV, IR finite and gauge independent.

http://code.sloops.free.fr/

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $M_f, \alpha(0), M_W, M_Z$

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $| m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : M

$$I_{A0}, t_{\beta} = v_2/v_2$$

 v_1 . Several definitions for δt_β :

• \overline{DR} : δt_{β} is a pure divergence

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $M_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_{\beta} =$

$$t_{\beta} = v_2/v_1$$
 .

Several definitions for δt_{β} :

- \overline{DR} : δt_{β} is a pure divergence
- MH : δt_{β} is defined from the measurement of the mass m_H

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $|m_f, \alpha(0), M_W, M_Z|$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_eta = v_2/v_1$. Several definitions for δt_eta :

- \overline{DR} : δt_{β} is a pure divergence
- MH : δt_{β} is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : M

$$_{\mathcal{A}^0}, t_eta = v_2/v_1$$

Several definitions for δt_{β} :

- \overline{DR} : δt_{β} is a pure divergence
- $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : M_{A^0} ,

$$_{\mathsf{A}^0}, t_\beta = \mathsf{v}_2/\mathsf{v}_1$$

•
$$\overline{\textit{DR}}$$
 : δt_{eta} is a pure divergence

- $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

Several definitions for δt_{β} :

SFERMIONS SECTOR

Input parameters : 3 sfermions masses $m_{\tilde{d}_1}, m_{\tilde{d}_2}, m_{\tilde{u}_1}$ and 2 conditions for $A_{u,d}$

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_eta = v_2/v_1$. Several definitions for δt_eta :

•
$$\overline{DR}$$
 : δt_{β} is a pure divergence

• $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H

$$A^0 au au$$
 : δt_eta is defined from the decay $A^0 o au^+ au^-(vertex\propto m_ au t_eta)$

SFERMIONS SECTOR

Input parameters : 3 sfermions masses $m_{\tilde{d}_1}, m_{\tilde{d}_2}, m_{\tilde{u}_1}$ and 2 conditions for $A_{u,d}$

NEUTRALINOS/CHARGINOS SECTOR

Input parameters : 2 charginos $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}$ and 1 neutralino $\tilde{\chi}_1^0$

Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} |\partial_\mu W^{\mu +} + i\xi_W \frac{g}{2} vG^+|^2$$
$$-\frac{1}{2\xi_Z} (\partial_\mu Z^\mu + \xi_Z \frac{g}{2c_w} vG^0)^2$$
$$-\frac{1}{2\xi_A} (\partial_\mu A^\mu)^2$$

$$\Gamma^{VV} = rac{-i}{q^2 - M_V^2 + i\epsilon} \left[g_{\mu
u} + (\xi_V - 1) rac{q_\mu q_
u}{q^2 - \xi_V M_V^2}
ight]$$

CHALONS Guillaume

Automatic calculations in the SM/MSSM : The SloopS project

Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} |\partial_\mu W^{\mu +} + i\xi_W \frac{g}{2} v G^+|^2$$
$$-\frac{1}{2\xi_Z} (\partial_\mu Z^\mu + \xi_Z \frac{g}{2c_w} v G^0)^2$$
$$-\frac{1}{2\xi_A} (\partial_\mu A^\mu)^2$$

$$\Gamma^{VV} = \frac{-i}{q^2 - M_V^2 + i\epsilon} \left[g_{\mu\nu} + (\xi_V - 1) \frac{q_{\mu} q_{\nu}}{q^2 - \xi_V M_V^2} \right]$$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

8/18

Non-Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +} \\ + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}h^{0} + \tilde{\omega}H^{0} + i\tilde{\kappa}G^{0} + i\tilde{\rho}A^{0})G^{+}|^{2} \\ - \frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g}{2c_{w}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}_{H}^{0})G^{0})^{2} \\ - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

CHALONS Guillaume

Automatic calculations in the SM/MSSM : The SloopS project

Non-Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +} \\ + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}h^{0} + \tilde{\omega}H^{0} + i\tilde{\kappa}G^{0} + i\tilde{\rho}A^{0})G^{+}|^{2} \\ -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g}{2c_{w}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}_{H}^{0})G^{0})^{2} \\ -\frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

 \rightarrow Gauge parameter dependence in gauge/Goldstone/ghost vertices.

→ No "unphysical " threshold, no higher rank tensor.

TREE LEVEL CALCULATIONS

Comparison with public codes : ${\tt Grace}$ and ${\tt CompHEP}$ Nans Baro PhD Thesis

Cross-section [pb]	SloopS	CompHEP	Grace	
$h^0 h^0 \rightarrow h^0 h^0$ 3	3.932×10^{-2}	3.932×10^{-2}	3.929×10^{-2}	
$W^+W^- \rightarrow \tilde{t}_1\bar{\tilde{t}}_1$ 7	7.082×10^{-1}	7.082×10^{-1}	7.083×10^{-1}	
$e^+e^- \rightarrow \tilde{\tau}_1 \bar{\tilde{\tau}}_2$ 2	2.854×10^{-3}	2.854×10^{-3}	2.854×10^{-3}	
$H^+H^- \rightarrow W^+W^-$ 6	5.643×10^{-1}	6.643×10^{-1}	6.644×10^{-1}	
Decay [GeV]				# 200 processes checked
$A^0 \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ 1	.137×10 ⁰	1.137×10 ⁰	1.137×10 0	
$\tilde{\chi}_1^+ \rightarrow t \tilde{\tilde{b}}_1$ 5	5.428×10 ⁰	5.428×10 0	5.428×10 0	
$H^{0} \rightarrow \tilde{\tau}_1 \bar{\tilde{\tau}}_1 = 7$	7.579×10 ⁻³	7.579×10^{-3}	7.579×10^{-3}	
$H^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$ 1	1.113×10^{-1}	1.113×10^{-1}	1.113×10^{-1}	

ONE-LOOP PROCESSES THAT DO NOT NEED RENORMALISATION

Comparison with public codes : PLATON and DarkSUSY Implementation of a special routine for loop integrals at v = 0Boudjema,Semenov,Temes, *Phys. Rev.* **D72**, 055024 (2005)

•
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \gamma$$

•
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow gg$$

•
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma Z^0$$

APPLICATIONS IN THE HIGGS SECTOR

N. Baro., F. Boudjema, A. Semenov, Phys. Lett. B660 (2008) 550, 0710.1821 [hep-ph]

 One-loop corrections to Higgs masses H⁺, h⁰ Freitas, Stockinger, Phys. Rev. D66 (2002) 095014, hep-ph/0205281

$t_{eta}=3$	mhmax	large μ	nomix				
Tree Level	72.51	72.51	72.51				
DCPR	134.28	97.57	112.26				
MH	140.25	86.68	117.37				
A au au	134.25	97.59	112.27				
$\overline{\mathrm{DR}}\ \overline{\mu} = m_{A^0}$	134.87	98.10	112.86				
1 * 1 * 1 *							

Light Higgs mass m_{h0}

• $A^0 \rightarrow \tau^+ \tau$	$^-$, $A^0 ightarrow Z^0 h^0$,	$H^0 ightarrow Z^0 Z^0$, I	$H^0 ightarrow au^+ au^-$				
	$t_{eta}=3$	mhmax	large μ	nomix			
	Tree Level	9.35×10^{-3}	9.35×10^{-3}	9.35×10 ⁻³			
	DCPR	-1.09×10^{-4}	-7.96×10^{-5}	-1.09×10^{-4}			
	MH	$+6.28 \times 10^{-3}$	-7.91×10^{-3}	$+4.47 \times 10^{-3}$			
	A au au	-1.45×10^{-4}	-7.09×10^{-5}	-1.01×10^{-4}			
	$\overline{\mathrm{DR}}\ \overline{\mu} = m_{A^0}$	$+5.08 \times 10^{-4}$	$+3.24 \times 10^{-4}$	$+4.17 \times 10^{-4}$			
	$H^0 \rightarrow \tau^+ \tau^-$ at one-loop with no QED						

• Theoretical issue due to non-linear gauge fixing and modified Ward-Slavnov-Taylor Identity in the Higgs sector :

$$m_{A^0}^2 \times A^0 \dashrightarrow \bigcirc \neg \rightarrow \Diamond \neg \rightarrow \land A^0 \dashrightarrow \bigcirc \neg \rightarrow G^0 = (m_{A^0}^2 - m_{Z^0}^2) \frac{i\epsilon}{s_{2W}} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow \bigcirc (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{h^0}^{G^0} \dashrightarrow \land A^0 + \tilde{\gamma} \times \circlearrowright_{H^0}^{G^0} \dashrightarrow (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{H^0}^{G^0} : (\tilde{\epsilon} \times \circlearrowright_{H^0}^{G^0} : (\tilde{\epsilon}) \xrightarrow{i\epsilon} [\tilde{\epsilon} \times \circlearrowright_{H^0}^{G^0} : (\tilde{\epsilon} \times \circlearrowright_{H^0}^{G^0} : (\tilde$$

APPLICATIONS IN THE CHARGINO/NEUTRALINO SECTOR

N. Baro, F. Boudjema, Phys. Rev. D80 (2009) 076010, arXiv :0906.1665[hep-ph].

 Chargino decays at one-loop (comparison with J. Fujimoto et al., Phys. Rev. D75 (2007) 113002, hep-ph/0701200.)

APPLICATIONS TO COLLIDER PHYSICS

e⁺e⁻ → χ̃₁⁺ χ̃₁⁻ J. Fujimoto *et al.*, *Phys. Rev.* D75 (2007) 113002, hep-ph/0701200.
 e⁺e⁻ → τ̃_iτ̃_i^{*} K. Kovarik *et al.*, *Phys. Rev.* D72 (2005) 053010, hep-ph/0506021.

APPLICATIONS TO PURE STANDARD MODEL PROCESSES

F. Boudjema, Le Duc Ninh, Sun Hao, M. M. Weber, Phys. Rev. D81 073007 (2010)

- $e^+e^- \rightarrow W^+W^-Z^0$
- $e^+e^- \rightarrow Z^0 Z^0 Z^0$

• Important processes to test the quartic gauge couplings and Higgs mechanism

See also Su Ji-Juan et al. Phys. Rev D78 016007, Sun Wei et al. Phys. Lett B680, 321

APPLICATIONS TO DARK MATTER

THERMAL RELIC

- $\Omega_{\chi} h^2 \propto 1/(\sigma(\chi\chi \to {
 m SM}))$
- Relic density calculated through the interface of SloopS with micrOMEGAs (Bélanger et al.)

BUNCH OF FULL ONE-LOOP PROCESSES CALCULATED

Baro,Boudjema,Semenov, *Phys. Lett* **B660** Baro, Boudjema, G.C, Sun Hao, *Phys. Rev.* **D81** 015005 (2010) (2008) 550

•
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \overline{f}$$
 (bino)

•
$$ilde{\chi}_1^0 ilde{ au}_1^+
ightarrow au^+ \gamma(Z^0)$$
 (bino)

- $\tilde{\tau}_1^+ \tilde{\tau}_1^+ \rightarrow \tau^+ \tau^+$ (bino)
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to W^+ W^-, Z^0 Z^0$ (bino-wino, bino-higgsino, higgsino, higgsino-bino, wino)
- $\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d}, t \bar{b}$ (bino-wino, higgsino, higgsino-bino, wino)
- $\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^-, Z^0 Z^0$ (wino)

INTERPLAY BETWEEN ILC AND COSMOLOGY

- What is required from collider data to get a precise prediction of $\Omega_{\chi}h^2$? (see Allanach *et al.* JHEP 0412 :020,2004.)
- What are the relevant observables to control the uncertainty on the predicted $\Omega_{\chi} h^2$?
- What is the required accuracy in order to achieve PLANCK precision ?

Basic example as an illustration

- Typical mSUGRA scenario : LSP is $\tilde{\chi}_1^0$ in the bulk region
- ${ ilde \chi}^0_1 { ilde \chi}^0_1 o \ell {ar \ell}$ through R-sleptons for $\Omega_\chi h^2$

• At tree-level $\boxed{m_{\tilde{\chi}_1^0}, m_{\tilde{\ell}}(m_{\tilde{\tau}_1})}_{\text{needed}}$ + mixing matrix of neutralinos and in the $\tilde{\tau}_1$ sector needed to reconstruct $\Omega_{\chi} h^2$.

At one-loop level?

- Sensitivity to parameters entering in loops? (non decoupling corrections, thresholds...)
- Sensitivity to renormalisation schemes?

SENSITIVITY TO SQUARKS MASSES

	M_1	M_2	μ	t_{β}	M _ẽ _R	M _ẽ	M_3	M_{A^0}
Masses (GeV)	90	200	-600	5	110	250	800	500
		250	${\rm GeV} \leq$	$M_{\widetilde{Q}} \leq$	< 800 Ge	V		

• At tree-level $\Omega_{\chi} h^2$ sensitive to $M_{\widetilde{Q}}$ when $M_{\widetilde{Q}} \simeq 300$ GeV (new channels open).

• Effects of squarks relevant in loops for $M_{\widetilde{Q}} \ge 300 \text{ GeV}$?

SENSITIVITY TO SQUARKS MASSES

	M_1	M_2	μ	t_{β}	M _ẽ _R	M _ẽ	M_3	M_{A^0}
Masses (GeV)	90	200	-600	5	110	250	800	500
		250	${\rm GeV} \leq$	$M_{\widetilde{Q}} \leq$	≤ 800 Ge	٠V		

- At tree-level $\Omega_{\chi} h^2$ sensitive to $M_{\tilde{Q}}$ when $M_{\tilde{Q}} \simeq 300$ GeV (new channels open).
- Effects of squarks relevant in loops for $M_{\widetilde{Q}} \ge 300$ GeV ?

SENSITIVITY TO SQUARKS MASSES

	M_1	M_2	μ	t_{β}	M _ẽ _R	M _ẽ ,	M_3	M_{A^0}
Masses (GeV)	90	200	-600	5	110	250	800	500
		250	${\rm GeV} \leq$	$M_{\widetilde{Q}} \leq$	≤ 800 Ge	٠V		

- At tree-level $\Omega_{\chi} h^2$ sensitive to $M_{\widetilde{Q}}$ when $M_{\widetilde{Q}} \simeq 300$ GeV (new channels open).
- Effects of squarks relevant in loops for $M_{\widetilde{O}} \ge 300$ GeV?

More or less the same conclusion at one-loop level. This may not be the case for other set of parameters.

- Complete EW renormalisation of the MSSM and modularity with different schemes.
- One-loop corrections to masses, decays, cross sections at colliders.
- One-loop corrections to neutralino annihilation relevant for relic density and indirect detection.
- First steps done for the connection with micrOMEGAs.
- In any case for $\Omega_{\chi} h^2 \otimes 1-2\% \Rightarrow$ one-loop corrections mandatory.
- Then at one-loop level more input is needed for an efficient reconstruction of parameters compared to the tree level case.
- Gather all available data to construct efficient renormalisation schemes.
- Implementation of QCD renormalisation in SloopS ongoing.

