

Preparing Schedules for the ILC PIP & TDR

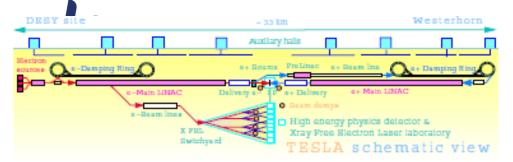
Peter H. Garbincius

Fermilab

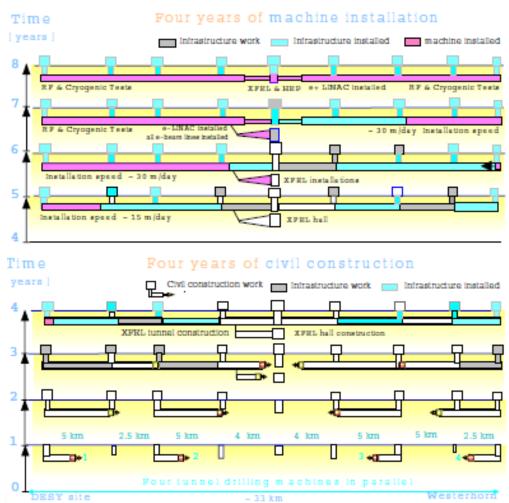
CFS at IWLC2010

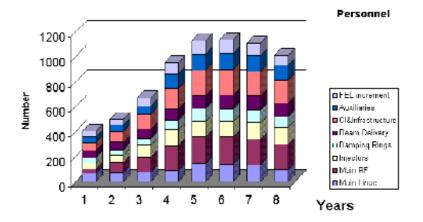
CICG - Geneve – October 20, 2010

short & sweet summary

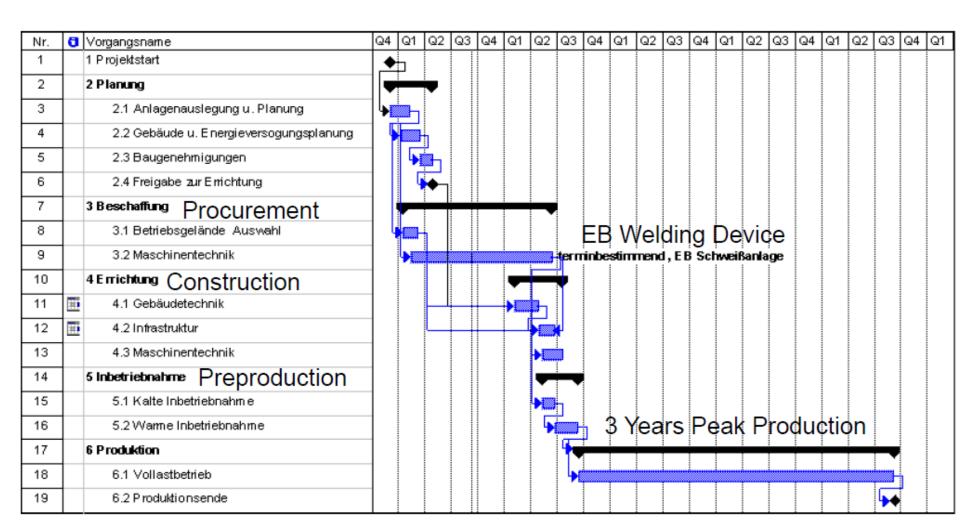

more in back-up slides

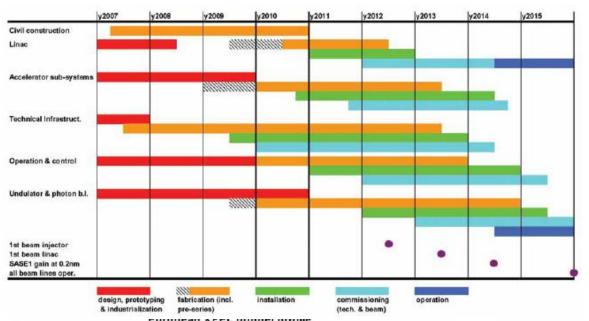
filename: PIP-Schedule-PHG-20oct2010-CFS.ppt

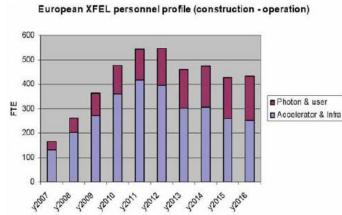


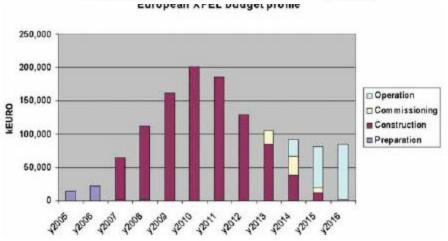

short summary

- Schedule for PIP is an executive summary (~ 1 page?) for governments and the public
- not the integrated & linked construction schedule
- yet it is expected to provide a realistic (defendable) timescale and resource profile
- How can we consistently prepare PIP-summary without producing the full schedule?
- Examples of PIP-level summary schedule: TESLA & XFEL TDRs, cold-USLCTOS, ILC RDR and its predecessors and children, AAA (Japan) civil schedule for Main Linac

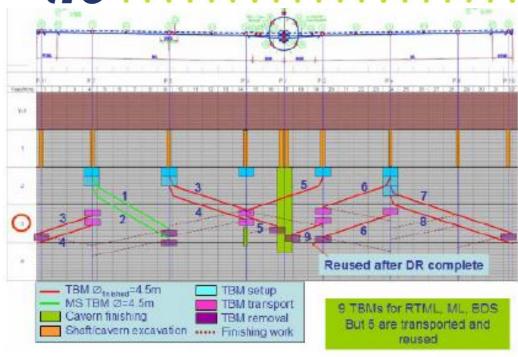

TESLA TDR




Cavity Production Schedule

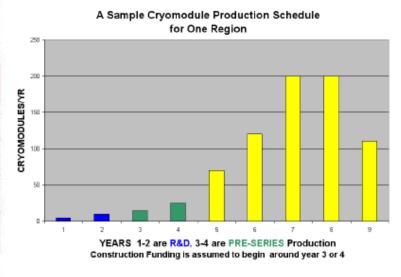


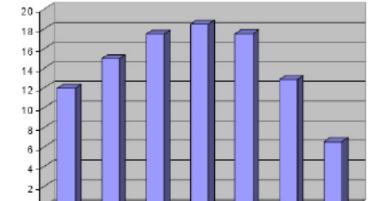
XFEL TDR



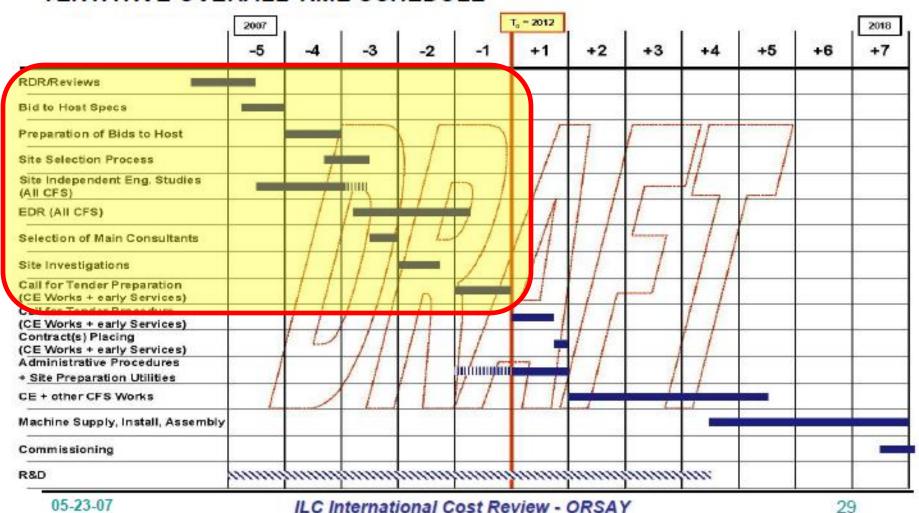
COLD-USLCTOS — no personnel or spending profiles

		U.S. FISCAL YEAR	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	П	Project Engineering	CDR	Site-indep.	Approve	Choose	Start of		Start of	Start of				Project
	١	Management Milestones	Review	R&D/Design	Baseline	Int'l Site	Constr'n		Installation	Preops				Closeou
F	ĘΪ	System Engineering	R&D	Design			Sustaining	Engineerin	g					
l I 🖁	8	Electron Injector Housing 220m		Civil Eng. (A-E Design	Constru	ct						
Ű	'n	Positron Source/PTL Hsg 850m		Civil Eng. (Concepts	A-E Des	ign Cons	truct						
IΓ	П	System Engineering	R&D	Design			Sustaining	Engineerin	0					
ا ا ا	80	Components		R&D	Design		Fab / produ	ice/procur	or o					
njecto	Ĭ	Electron Source & Inj. Linac 220m	R&D						Instal	e*	Com miss k	oning & Dev	velopment	
۽		Positron Source & Inj. Linac 850m	R&D							Instal		p*	Access	
ľL		Positron Transfer Line		R&D						Ins	stall	p*	Access	
ΙΓ	П	System Engineering	R&D	Design			Sustaining	Engineerin	g					
l y	8	Dog-bone DR Components		R&D	Design		Fab / produ	ice/procur	0					
6	2	Electron Dog-bone DR 9,500m [1]	R&D						Instal	I[2] with ML	Θ*		Access	
L		Positron Dog-bone DR 9,500m [1]	R&D							Instal	II[2] with MI	p*	Access	
	<u>.</u>	System Engineering	R&D			Design		Sustaining	Engineerin	9				
l 18	5	Compressor Components		R&D			Design	Fab / produ	uce / procur	0				
l I f	5	Electron Compressor 400m								Insta	e*		Access	
6	5	Positron Compressor 400m									Instal	p*	Access	
—	Test	R&D System Engineering	Design		Sustaining	Engineerin	g							
I I 6		R&D Components	R&D		Industrial p	prototy pes								
Linacs		R&D Test Accelerator	Design		Construct		Test comp	onents and	develop sys	toms				
 ≛ -	_	System Engineering	R&D	Design	Construct	or TTHO-LOCAL	_	Engineerin		- Contras				
Main		Main Linac Components	R&D	J. 10.19.1	Design	Fab / produ	ice / procur					Spares		
×	_	Electron Main Linac 21,800m [3,4]		Civil Eng. (A-E Design		truct [6]	Install	150GeV[7]	DR or e*	Opulos	Install [7]	6*
1 15	·	Positron Main Linac 20,700m [5]		Civil Eng. (A-E Des		nstruct [6]		Insta		PTL/DR p*		p*
	,	System Engineering	R&D				Design		Sustaining	Engineerin	a			
Delivery Lines action Regions	_	Beam Delivery Components		R&D				Design	Fab / produ	ice / procur	9			
.⊒ . <u>₹</u>	ю.	Electron Delivery Line 1 1,800m		Civil Eng. (Concepts	A-E Design	Cons	truct [6]			Install	PTL on		e*
8 0	Ĭ	Positron Delivery Line 1 1,800m		Civil Eng. (A-E Des		nstruct [6]			Install	PTL on		p*
- §	9	I. R. Hall 1		Civil Eng. (Construct	mada [o]	Install I.R.	& Detector	III TO COM	PTL on		e* :
ě	ĕ	Electron Delivery Line 2 1,100m		Civil Eng.			Design	Construct	mro-com miles	a D 0 00 0 00 1		11201	Install	e*
Beam & Inter	*	Positron Delivery Line 2 1,400m		Civil Eng. (E Design	Constru	ct				Install	p*
ag 🧏		I. R. Hall 2		Civil Eng. (1.5	Construct	Collecto		Install I.R. &	8. Detector		mstan	e*
\vdash	+	System Engineering	Civil Eng.	-	A-E Systen	Design	00110010101	Engine erin	· ·	mistani tire e	a Detector			
	ł	Geotechnical Engineering	Geote chni				ace Investig		•					
	, l	Environmental Protection		ental Impact			ace investig	auon						
ğ		Clear & Grade	Environme		-		Comptens	<u> </u>						
S T	77.			Civil Eng. (A-E Design	Construct							
g u		Roadways, Landscape		Civil Eng. (A-E Design		_						
8 7	2	Warehousing		Civil Eng. (A-E Design		-4						
oğ .5	2	Heavy Assembly Facility		Civil Eng. (A-E Design								
4	-	Mech. Utility Systems		Civil Eng. (A-E Design								
Site		Electrical Distrib. System	I	Civil Eng. (A-E Design	_							
Site & Campus														
Site		Cryogenic Systems		Civil Eng. (A-E Design		Construct						
Site		Cryogenic Systems Central Campus Buildings		Civil Eng. (Concepts	Ĭ		A-E Design		Construct				
Site	3	Cryogenic Systems	R&D	-	Concepts	Ĭ	Construct		Outfit		ommissioni	ng & Develo	pment	




ILC RDR

did not include installation schedule nor personnel profile



% of Total Value per Year

ilr

Jean-Luc Baldy - CF&S oriented includes pre-construction activities

TENTATIVE OVERALL TIME SCHEDULE

PHG - Schedule for PIP CFS - Geneve - 20oct2010

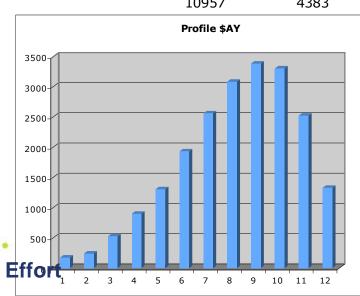
Mike Harrison – P5 – February 1, 2008

construction "value-%" only from RDR

POSSIBLE SEVEN YEAR CONSTRUCTION SCHEDULE AND COST PROFILE

SYSTEM/YEAR	ONE	TWO	THREE	FOUR	FIVE	SIX	SEVEN	EIGHT % of TOTAL
CF&S	11	11	9	4	1	1	0	37% of total
CRYOMODULES	1	3	4	5	5	3	2	23% of total
RF SYSTEMS		0	1	3	4	. 2	1	11% of total
CRYO SYSTEMS		1	2	2	2	: 1	0	8% of total
MAGNETS & PS's			1.5	2	2	2	0.5	8% of total
CONTROLS				1	1	1	1	4% of total
INSTALLATION				1	1.5	1.5	1	5% of total
VACUUM				0.5	0.5	0.5	0.5	2% of total
INSTRUMENTATION					0.25	0.5	0.25	1% of total
DUMPS					0.3	0.4	0.3	1% of total
OVERALL COMMISSIO	ONING			(OPS FUNDING	OPS Funding	OPS Funding	FULL OPS FUNDING
Total	12	15	17.5	18.5	17.55	12.9	6.55	100

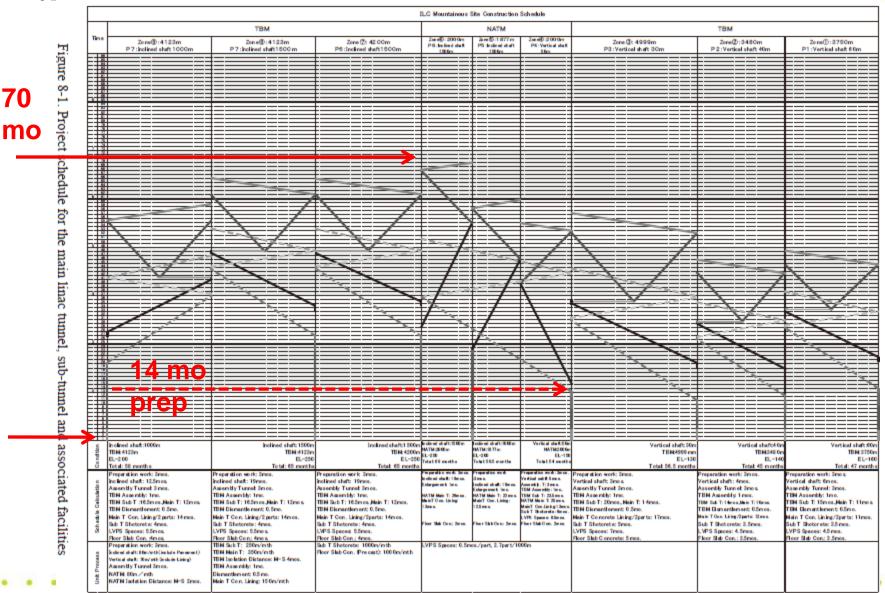
Mike Harrison — P5 — February 1, 2010


(all-inclusive DOE-like) ILC Construction costs (TEC)

Year	Funding Type	CD's	Funding \$FY07	Funding at year	Inflator	Host 50%	non-Host 20%
FY11	Program	CD0	150	172	1.148	86	34
FY12	Program		250	297	1.188	148	59
FY13	PED	CD1	420	516	1.229	258	103
FY14	PED	CD2	795	1011	1.272	506	202
FY15	PED		1074	1414	1.317	707	283
FY16	Project	CD3	1492	2033	1.363	1017	407
FY17	Project		1900	2680	1.411	1340	536
FY18	Project		2174	3174	1.460	1587	635
FY19	Project		2300	3475	1.511	1738	695
FY20	Project		2200	3441	1.564	1720	688
FY21	Project		1700	2752	1.619	1376	550
FY22	Project		845	1416	1.675	708	283
FY23	Ops			0	1.734	0	0
	Totals (\$M)		14900	21913		10957	4383

Inflation 3.5%

With the long lever arm we are sensitive to assumptions on inflation. A change of 0.5% = \$1.2B AY


Totals do not include programmatic funding

AAA-Japan – for Main Linac

http://ilcagenda.linearcollider.org/getFile.py/access?contribId=10&resId=0&materialId=paper&confId=4613

what do we need when?

by end of TD Phase: a block format, top-down summary, showing vital linkages, cost phasing, and constraints. Can this project be realistically completed in a finite time? EXCEL or MS Project Is this consistent with what PMs are considering?

by time to go to governments for project approval:

Primavera: integrated resource-loaded, linked to cost estimates & basis of estimates with most details

by beginning of construction project:

Primavera integrated with ILC accounting system via COBRA for Earned Value Management System

PIP-schedule(s) should:

- Accommodate multiple governance models
- Accommodate multiple sites (flat vs. mountainous)
- Include pre-construction activities
- Civil Engineering must include ML caverns, tunnel widenings, and Damping Rings
- Illustrate, if not solve, interferences & bottle-necks
- Accommodate early commissioning of
 e- Source, auxiliary e+ Source, & DRs during
 construction of ML, RTML & installation of BDS
- Accommodate commissioning of BDS while installing Experiments

What does CPDG RFC have to say? ? 90

Request for Comment: White Paper on the Comprehensive Project Design Guidance (CPDG) for the International Linear Collier

- **GD-4, 5, 6**: Accelerator Construction Process Technical. Assignment: GDE. This WP deals with a group of <u>timeline analyses</u> for the construction steps to follow for the ILC accelerator and related facilities. The proposed contents of the studies include the following:
- GD4: Design preparation stage Finalization of the accelerator design, and advanced manufacturing studies.
- GD5: Construction stage Steps to follow in component fabrication, component installation and commissioning.
- GD6: Schedule for conventional facilities Steps to follow in tunnel excavation and construction of surface facilities.
- Sounds like ILCSC wants GDE to provide ...by end of TDR.
 Sounds like schedule needs to be much more well developed than top-down PIP schedule outline.

Questions to Answer:

- Should R&D be included? US DOE would say so...
- When are resources (funding & personnel) required?
- What cryomodule rate is needed for installation?
 JIT delivery = no "outdoor" warehousing
- How is shorter schedule optimized vs. higher cost?
- Who provides the PIP-schedule? do-it-ourselves!
 top-down from senior management, not engineered!
 Small team: Cost Eng(s), CFS, scheduling (Katy?),
 leaders of long lead time items (cavities, CM, etc),
 with guidance from Project Managers
- Needed scope & maturity of schedule for GD-4,5,6?

Discussion.

discussion notes:

backup slides and examples the more complete story

ilc

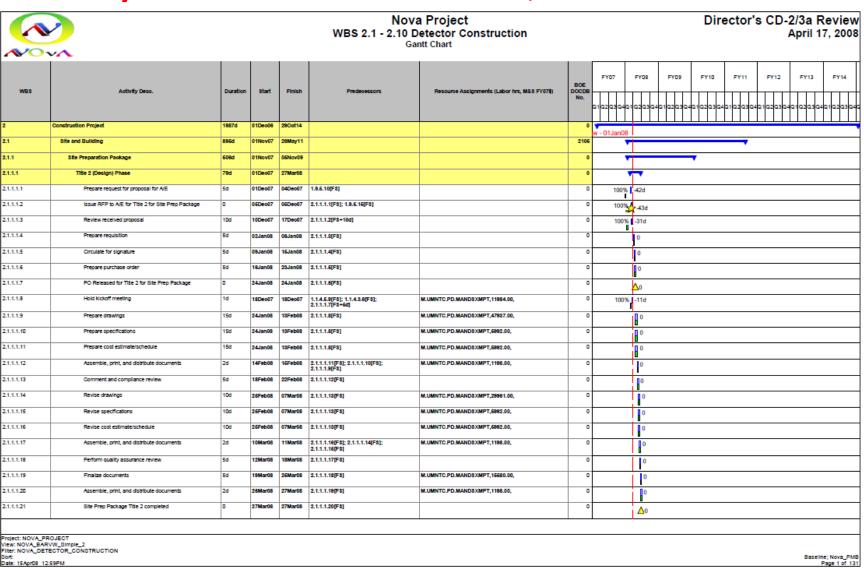
outline

- Path toward two schedules PIP and TDR
- Examples of PIP & TDR-level schedules
- What do we need when? A schedule for schedules!
- Multiple Sites? => Final Site Governance Models
- Commissioning Constraints (or desires)
- Schedule (along with scope & cost) as project driver
- Schedule for pre-construction and commissioning
- Shortcomings of Conventional Construction Scheds
- Who's going to participate in forming schedules?
- What does CPDG say about any of this?

and now for a real project schedule: NOvA = \$278 M => ANU page 1 of 33

Nova Project WBS 2.0 - ANU Construction Gantt Chart

Director's CD-2/3a Review April 17, 2008


WBS	Activity Desc.	Duration	Start	Finish	Predecessors	Resource Assignments (Labor %, M&S FY07\$)	BOE DOCDB No.	MSP Unique ID	FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14
2	Construction Project	1987d	01Deo06	29Oot14			0	0	-01Jan08
2.0	ANU Construction	1829d	01Deo06	13Mar14			0	2247	
1.0.1	Recycler Upgrades	1081d	28Deo07	17Apr12			0	2248	•
2.0.1.1	Recycler Ring Modifications	801d	02Feb08	06Apr12			0	2248	· · · · · · · · · · · · · · · · · · ·
2.0.1.1.1	Beam Lines (Transfer, Abort & RR 30 Straight)	801d	02Feb08	08Apr12			0	2260	, , , , , , , , , , , , , , , , , , , ,
2.0.1.1.1.1	Common Tooling for Permanent Magnet Assembly	70d	06Mar09	11Jun09			0	3133	•
2.0.1.1.1.1.1	Prep Req & Award PO for Tooling Parts	40d	06Mar09	28Apr08	2.10.9.6[F8]; 1.0.1.1.2.2.8.3[F8]		1809	3069	0
2.0.1.1.1.1.2	Receive & Inspect Tooling Parts	10d	30Apr09	13May09	2.0.1.1.1.1[F8]	M.FNAL.AD.MANDS,\$18000;L.FNAL.TD.TECH. MT_W,20%	1809	3070	10
2.0.1.1.1.3	Assemble Tooling	20d	14May09	11Jun09	2.0.1.1.1.1.2[F8]	LFNALTD.TECH.MT_W,40%;LFNALTD.ENG. ME,10%	1809	3071	0
2.0.1.1.1.2	RR Magnet & Instrumentation Stands	341d	02Feb08	08Jun10			0	2261	· · · · · · · · · · · · · · · · · · ·
2.0.1.1.1.2.1	Final Design IL Magnet Stands	40d	18Oct09	14Deo09	1.0.1.1.2.1.2.1[F8]	LFNALAD.ENG.ME,80%;LFNALAD.ENG. DRFT,76%	1725	3226	0
2.0.1.1.1.2.2	Final Design EL Magnet Stands	40d	033ep09	29Oot09	1.0.1.1.2.1.2.2[F8]	LFNALAD.ENG.ME,80%;LFNALAD.ENG. DRFT,76%	1725	3227	7 0
2.0.1.1.1.2.3	Final Design RR-30 SS Magnet Stands	25d	23Jul09	28Aug09	2.10.9.7[F8]; 2.0.1.1.1.14.13[88+10d]	LFNALAD.ENG.DE8,76%;LFNALAD.ENG. ME_8R,8%;LFNALAD.ENG.ME,64%	1725	1678	0
2.0.1.1.1.2.4	Final Design BA Kicker Stands	19d	02Feb08	26Feb09	2.10.9.7[F8]	LFNALAD.ENG.DE8,76%;LFNALAD.ENG. ME_8R,6%;LFNALAD.ENG.ME,64%	1725	1701	1 0
2.0.1.1.1.2.5	Final Design Instrumentation Stands	25d	23Jul09	26Aug09	2.10.8.7[F8]; 2.0.1.1.1.14.2[88+10d]; 2.0.1.1.1.14.7[83+10d]; 2.0.1.1.1.14.13[88+10d]	L FNAL AD ENG. DE8,75%; L FNAL AD ENG. ME_8R,8%; L FNAL AD ENG.ME,64%	1725	3083	0
2.0.1.1.1.2.6	Frep Req & Award PO for IL Magnet Stands	40d	16Deo09	16Feb10	2.0.1.1.1.2.1[F8]; 2.10.8.8[F8]	LFNALAD.ENG.ME,6%	1788	2253	3 0
2.0.1.1.1.2.7	Vendor Fab & Receive IL Magnet Stands	80d	18Feb10	08Jun10	2.0.1.1.1.2.8[F8]	L FNAL AD.ENG.ME,1%;L FNAL AD.TECH. MT_W,2%;M.FNAL AD.MAND8,\$60000	1788	2905	5 0
2.0.1.1.1.2.8	Prep Req & Award PO for EL Magnet Stands	40d	30Oct09	30Deo09	2.0.1.1.1.2.2[F8]; 2.10.8.8[F8]	LFNALAD.ENG.ME,6%	1788	2254	0
2.0.1.1.1.2.9	Vendor Fab & Receive EL Magnet Stands	80d	04Jan10	28Apr10	2.0.1.1.1.2.8[F8]	LFNALAD.TECH.MT_W,2%;M.FNAL.AD. MAND8,\$43000;LFNALAD.ENG.ME,1%	1788	2906	0
2.0.1.1.1.2.10	Prep Req & Award PO for RR-30 SS Magnet Stands	40d	27Aug08	22Oot09	2.0.1.1.1.2.3[F8]; 2.10.8.6[F8]	LFNALAD.ENG.ME,6%	1788	2255	0
2.0.1.1.1.2.11	Vendor Fab & Receive RR-30 Magnet Stands	70d	23Oot09	08Feb10	2.0.1.1.1.2.10[F8]	LFNALAD.TECH.MT_W,2%;LFNALAD.ENG. ME,1%;M.FNALAD.MAND8,#30000	1788	2907	0
2.0.1.1.1.2.12	Prep Req & Award PO for BA Kicker Stands	40d	27Feb09	23Apr09	2.0.1.1.1.2.4[F8]; 2.10.8.6[F8]	LFNALAD.ENG.ME,6%	1788	2252	2 0
2.0.1.1.1.2.13	Vendor Fab & Receive BA Kicker Magnet Stands	60d	24Apr09	20Jul09	2.0.1.1.1.2.12[F8]	M.FNAL.AD.MAND8,\$1000;L.FNAL.AD.ENG. ME,1%;L.FNAL.AD.TECH.MT_W,2%	1788	2908	
2.0.1.1.1.2.14	Prep Req & Award PO for RR Instrumentation Stands	40d	27Aug09	22Oot09	2.0.1.1.1.2.6[F8]; 2.10.8.6[F8]	LFNALAD.ENG.ME,6%	1528	3088	

Project: NOVA_PROJECT View: NOVA_BARVW_Simple_99 Filter: Nova_ANU_Construction

Baseline; Nova_PMB Page 1 of 33

NOvA Detector – page 1 of 133 OpenPlan – resource loaded, linked to COBRA

Path toward two schedules

- Schedule for Project Implementation Plan (PIP)
 - my understanding of what Mike Harrison desires:
 - handy summary for governments & public
 - top down by management & scientists
 - just sketches, guesses... not engineered
 - EXCEL-level, not even MS Project see examples
 - but he wants (firm) timescale and funding profile
- Schedule for Technical Design Report (TDR)
 - engineered, professionally scheduled, linked
 - fully integrated & resource loaded => funding profile
 - at least MS Project, if not Primavera, -based
- Same preparation timescales? Consistency?

 Spencer Curtis dropped by on Tuesday, Oct 12 and said TRIAD was producing a Primaverabased, resource-loaded schedule of about 4,000 elements for Kem Robinson (LBNL) in preparation for their Preliminary Design Report and Review. This PDR will set the baseline for the DUSEL project in South Dakota.

what do we need when?

by end of TD Phase: a block format, top-down summary, showing vital linkages, cost phasing, and constraints. Can this project be realistically completed in a finite time? EXCEL or MS Project Is this consistent with what PMs are considering?

by time to go to governments for project approval:

Primavera: integrated resource-loaded, linked to cost estimates & basis of estimates with most details

by beginning of construction project:

Primavera integrated with ILC accounting system via COBRA for Earned Value Management System

schedule must accommodate multiple governance models

- CERN-like: pooled funding & central management
- In-kind: still need time links and interfaces, central team still must manage & optimize
- any degree of hybrid between these two extremes

must accommodate multiple sites

- At PIP level through end of Tech Design Phase
- With regard to Conventional Facilities part, maybe a single schedule could accommodate both "flat-land" sites, but I would expect schedule for mountainous sites to be different.
- Once ILC site is selected, the CFS design, estimate, and schedule and interfaces with everything else, will have to be done for that particular site.

shortcomings of CFS schedules

- Both CERN and AAA schedules concentrate on Main Linac, BDS, and Experimental Hall, not including Damping Rings (Drill&Blast/NATM) or tunnel widenings, caverns, etc, only TBMs
- AAA (and Tracey Lundin) warn that interface betw ML & Exp. Hall will need much coordination e.g. (no) ML rock removal through Exp. Hall?
- Are there enuf shafts for optimized construction?
- We will want to start beam commissioning the e- Source, auxiliary e+ Source, & DR as soon as possible, even while simultaneously constructing ML, RTML, and installing BDS.

schedule vs. cost

- Which is more important? How to optimize?
- Investing in more production lines for faster production of cavities will increase the average cost per cavity.
- How many TBM operations could operate simultaneously without interference?
- What is the cost effectiveness optimization?

schedule should include pre-construction & commissioning

- Do as much as possible before start of project: steps leading up to project approval & funding, off-project design, industrialization, vendor qualification, pre-series, site selection, selection of Architectural Engineering - Construction Management (AE/CM) firm, customizing design for specific site, remaining on-project design (problematic for ITER!!!), call for tenders, etc.
- Commissioning of early stages e-, e+, & DR while continuing construction of RTML & ML and installing BDS & Experiments.

What about R&D?

Should R&D be included in these schedules?
 DOE considers R&D part of construction project

what do we need to know? what can PIP schedule tell us?

- When are resources (funding & personnel) required?
- How fast/early will cryomodules be needed to match conventional construction & installation?
 Only 51 CMs needed for e- and aux. e+ Sources
 Gee, that's ~ ½ of XFEL for 2 x 5 GeV
 Can these be provided through pre-series?
- JIT (just-in-time) delivery no outdoor warehousing!

do we need professional help?

- Vic Kuchler says understanding "constructability" and optimization of underground construction will require professional assistance from experts
- GDE resources may be available for such help with both preliminary design and scheduling
- Mike Harrison doesn't think this effort is needed for the PIP schedule, but may be for the TDR schedule
- That leaves us to do-it-ourselves => forming an integrated schedule will require attention and contributions from all area and technical groups

CPDG RFC seems to indicate that

such a detailed schedule would be beyond TDP and be developed by the *pre-ILC* organization

discussion

 Your comments and suggestions, especially about scope, timescales, and personnel, are very welcomed!