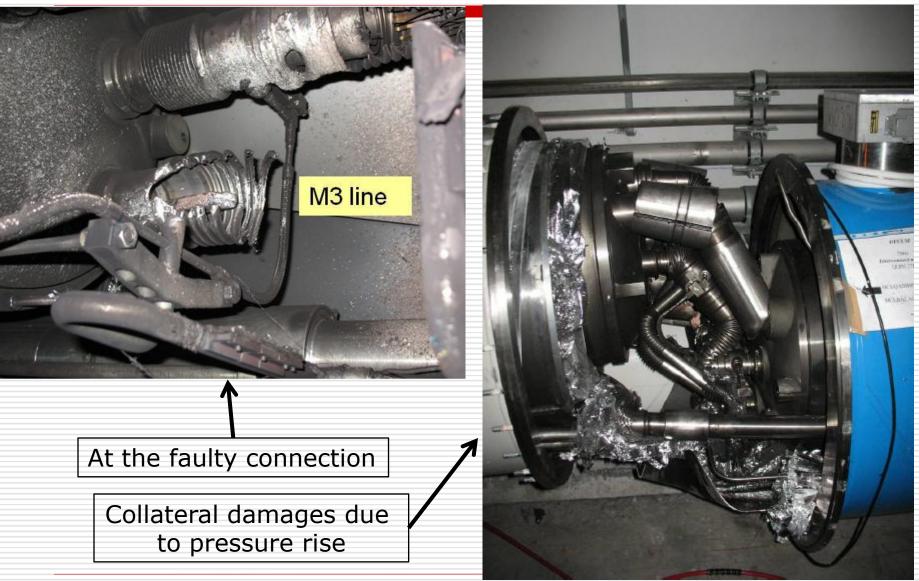
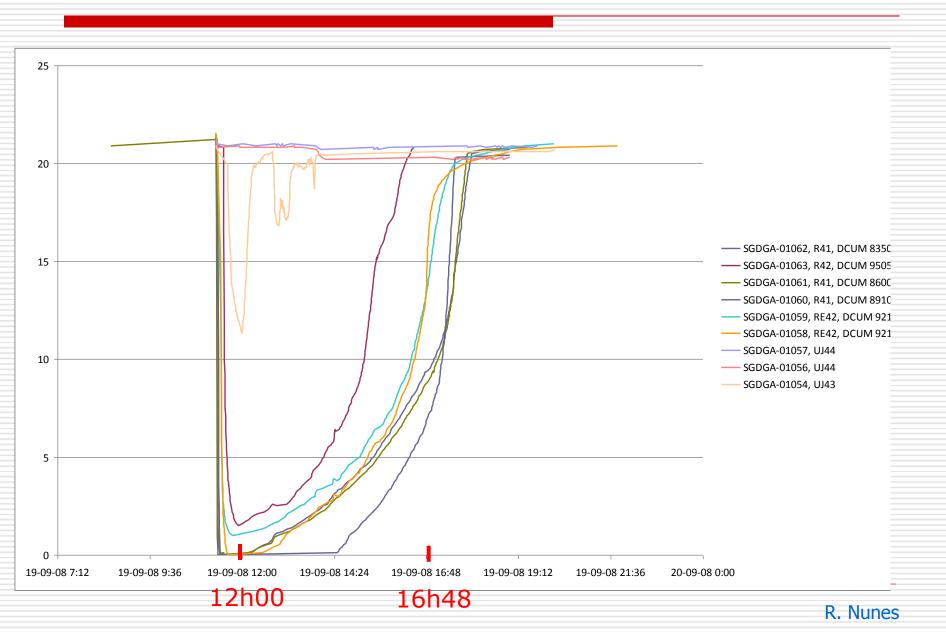
Lessons from LHC He Release and R2E


Content

- The September 19th (2008) Accident at LHC
- New Safety Measures in Force
- Impact in the Field and Consequences on Access
- Sensitivity of LHC Electronics to Single Event Effect
- Short Term Actions to Mitigate SEE
- Longer Term Strategies Explored
- Summary


Many thanks to all contributors

IWLC 2010

Consequences of September 19th (2008) event in sector 3-4 of the LHC

Oxygen content in the tunnel (sensors on the ceiling)

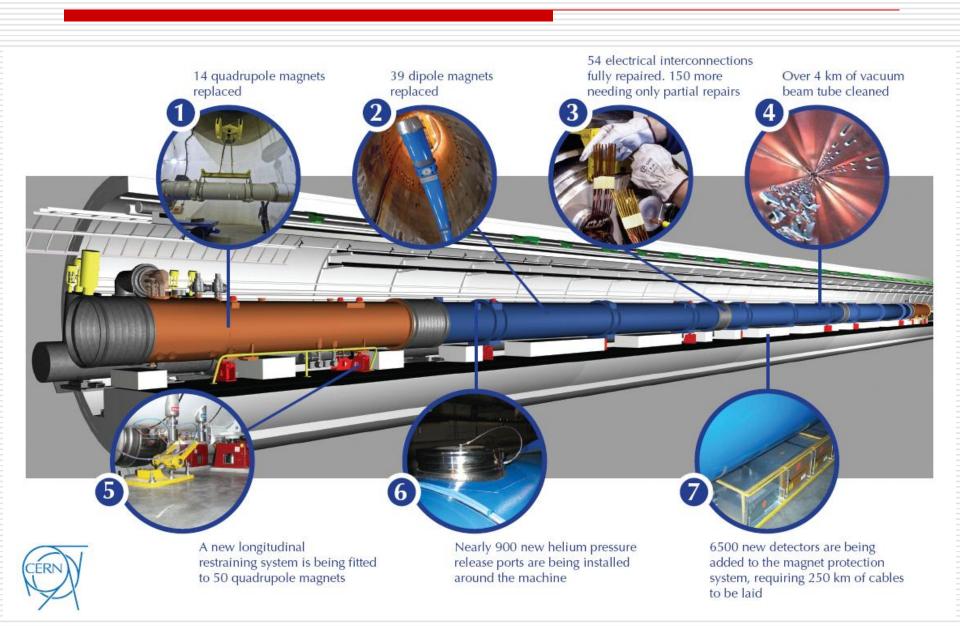
 ~ 10 GJ stored in magnetic field (154 dipoles in series) Circuit inductance =15 Henrys (τ discharge =100s) LHC quench protection **Power Converter** resistors for energy extraction Magnet Magnet Magnet 2 Magnet 15 bypass diode

- when one magnet quenches, quench heaters are fired for this magnet
- □ current in quenched magnet decays in about 200 ms
- □ the current in all other magnets flows through the bypass diode that can stand the current for about 100-200 seconds; resistors are switched in series

R. Schmidt

2 Working Groups to analyse the 19/09/2008 event « Task Force »

Mandate of the Task Force on the Analysis of the 19 September 2008 Incident


- Establish the sequence of facts, based on experimental measurements before incident, observations after incident and timing
- Analyse and explain the development of events, in relation with design assumptions, manufacturing & test data and risk analyses performed
- **Recommend** preventive and corrective actions for Sector 3-4 and others

Mandate of the Task Force on Safety of Personnel in the LHC underground

- Establish the sequence of facts related to Safety of Personnel, based on AL3 data and FB emergency intervention records
- Analyse the LHC underground environmental conditions with respect to Safety of Personnel and <u>explain</u> their development in relation with original risk analyses (incl. Tests) performed

Recommend preventive and corrective actions for the Safety of Personnel in the LHC underground

Main works to repair and consolidate the LHC

Recommandations of the Task Force on Safety of Personnel in the LHC underground

- □ All efforts have to be made to limit an incidental helium release and the resulting overpressure
- Any incidental helium release shall be confined to the ventilation sector where it occurs
- □ This confinement must be carried out in combination with a controlled release of overpressure to the surface
- □ No access shall be allowed to any ventilation sector of the LHC in which a large helium release has a non-negligible probability to occur.

A ventilation sector is defined as the area directly affected by the overpressure resulting from the helium release.

A large helium release is defined as being at least of the same order of magnitude as the release of 19th September 2008 accident.

Separation of the ventilation sectors – Experimental areas

Interface with survey galleries

Interface between detector caverns and machine areas

Interface between experimental service caverns and machine (Pt5 only)

Sealing of the Experimental Areas (part 1)

1) Along the beam line


Sealing around the TAS - ATLAS case built for 110mb (expect <32mb), Tmin 200K, compatible with ±15mm adjustment

2) Interfaces with survey galleries

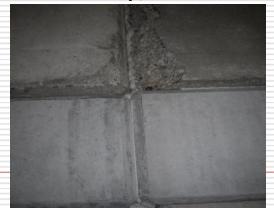
ATLAS: UPS caps on survey ducts and doors

built for 110mb (expect <32mb) T_{min} 200K fire resistant

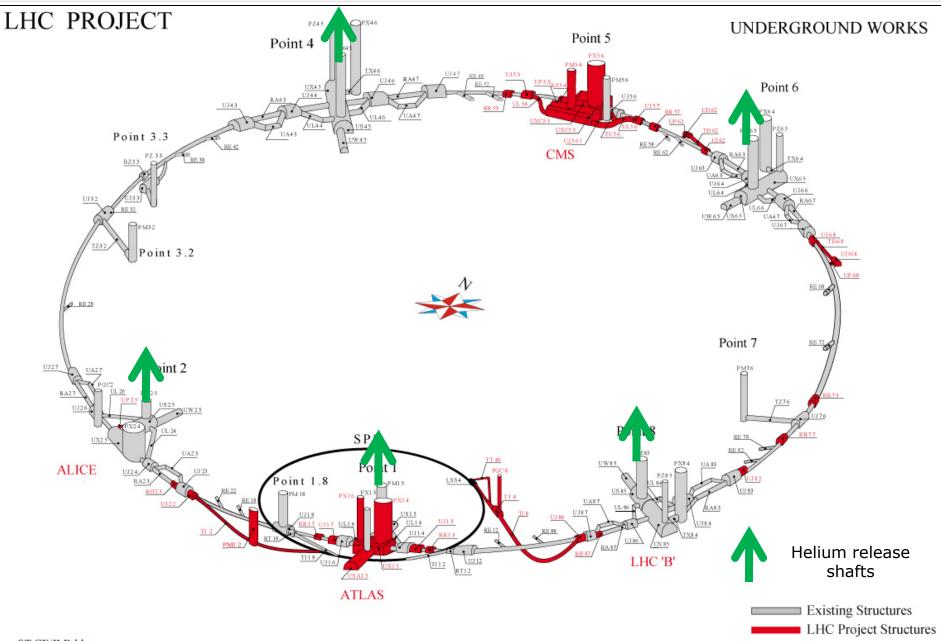
YCPZ0

UPS14

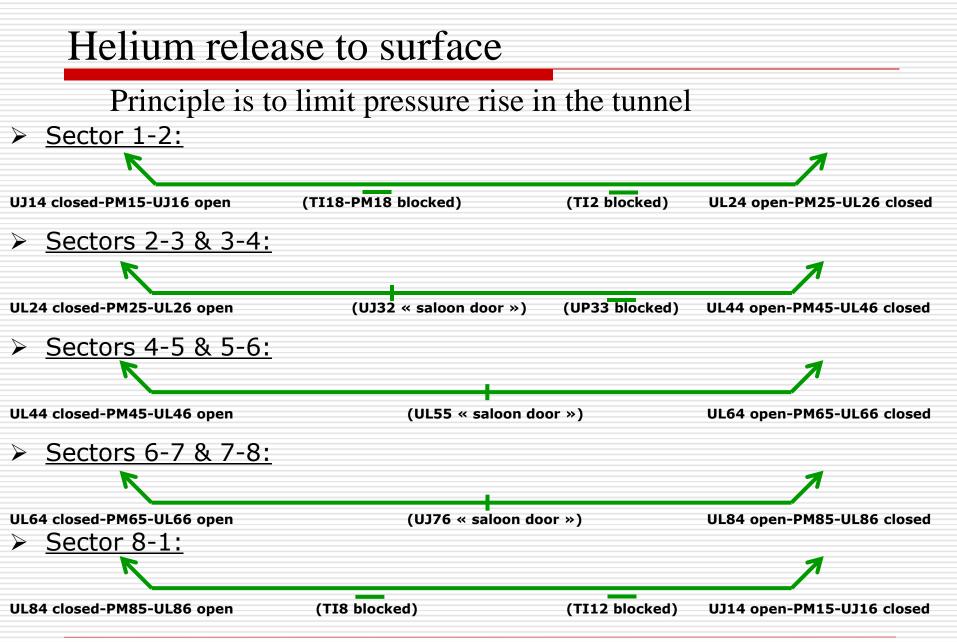
Sealing of the Experimental Areas (part 2)


 Interface between experimental cavern and service areas of the LHC machine

ATLAS: fire (T90) and pressure resistant doors between US15 and UX15 (certified 40mb, expect <11mb)



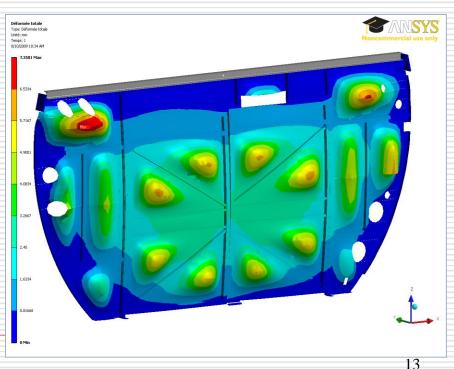
+ sealing of all passages of
Pipes and cable trays, spacing
between shielding blocs.
Use rock wool and Promafoam
(fire resistant), re-enforcement



Helium release to surface $-MCI \equiv 40 \text{kg/sec}$

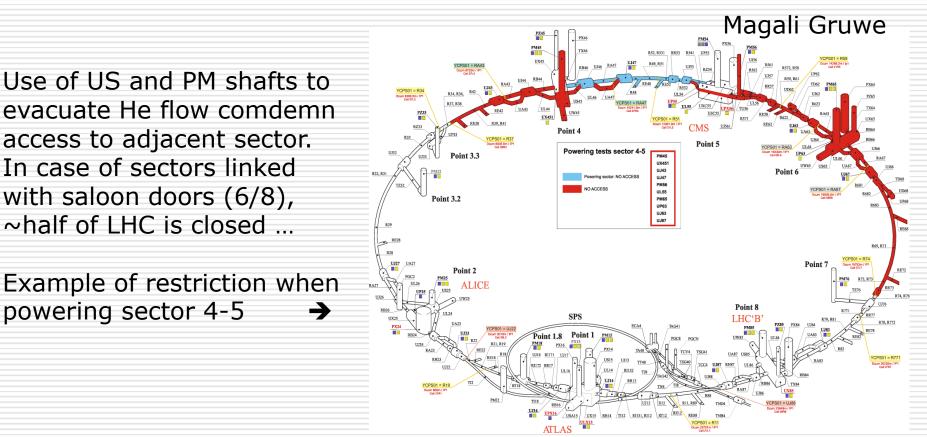
ST-CE/JLB-hlm 18/04/2003

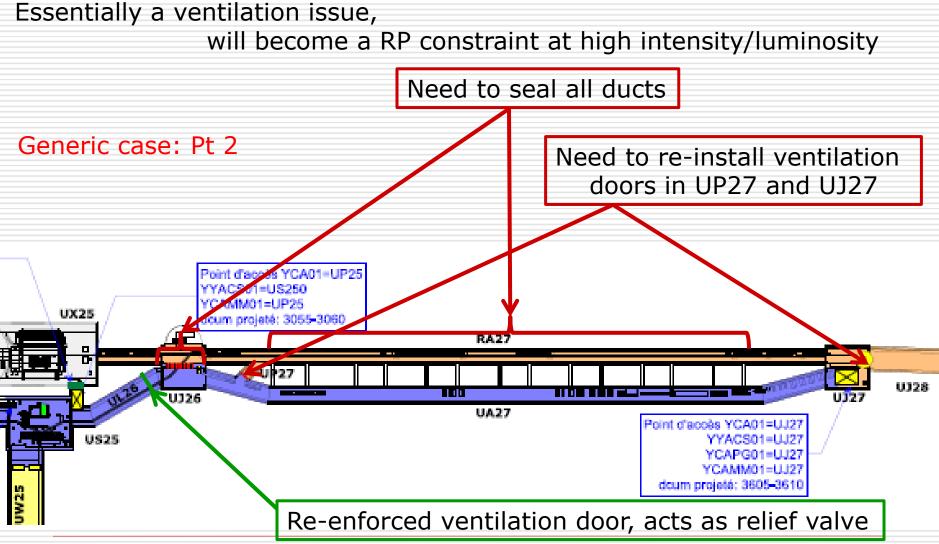
Controlled Helium release – Ventilation doors


Relief valve type of doors, in UJ14/16,UL24/26,UL44/46,UL64/66 & UL84/86

Deformation of re-enforced door: $30mb \rightarrow 7,4mm max.$

Door re-enforced, opens with 5mb overpressure from adjacent sector and stands 30mb from US side.

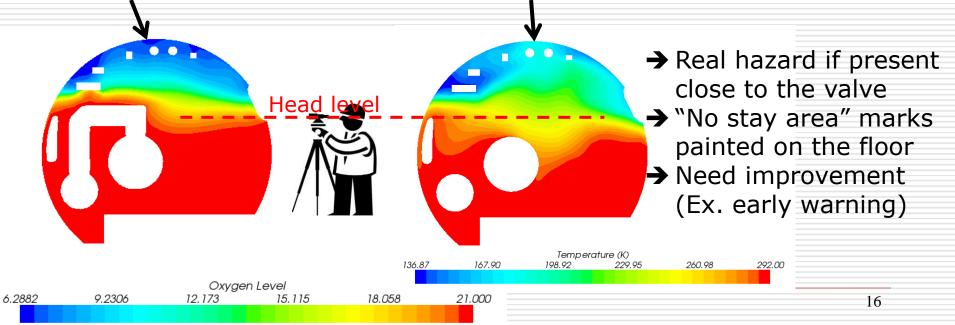

Door positions monitored from CCC


Access matrix for the LHC underground

New access restrictions when main magnets are (or could be) powered

Access conditions in LHC are documented in EDMS N°1010617

Still to do ... Sealing of LHC service areas

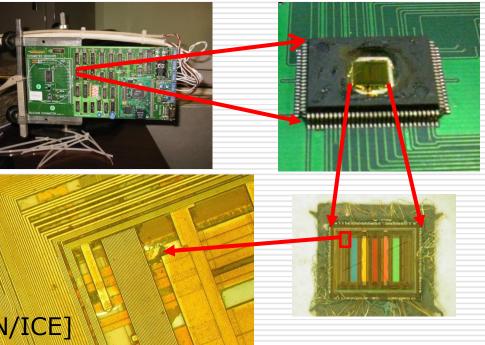


Still to do ... Safety during short access

Liquid He is transferred into surface storage tanks during x-mass breaks and shut-downs, but remains in the cryostat during short access → MCI without powering of main circuits can lead to a 1kg/s leak

Fluid Dynamic simulation of a 1kg/s leak Lazlo Daroczy

Situation 15 seconds after opening of the safety valve: oxygen content (7m upstream) – temperature (7m downstream)



R2E - Single Event effects

□ Soft Errors (recoverable)

Part 2

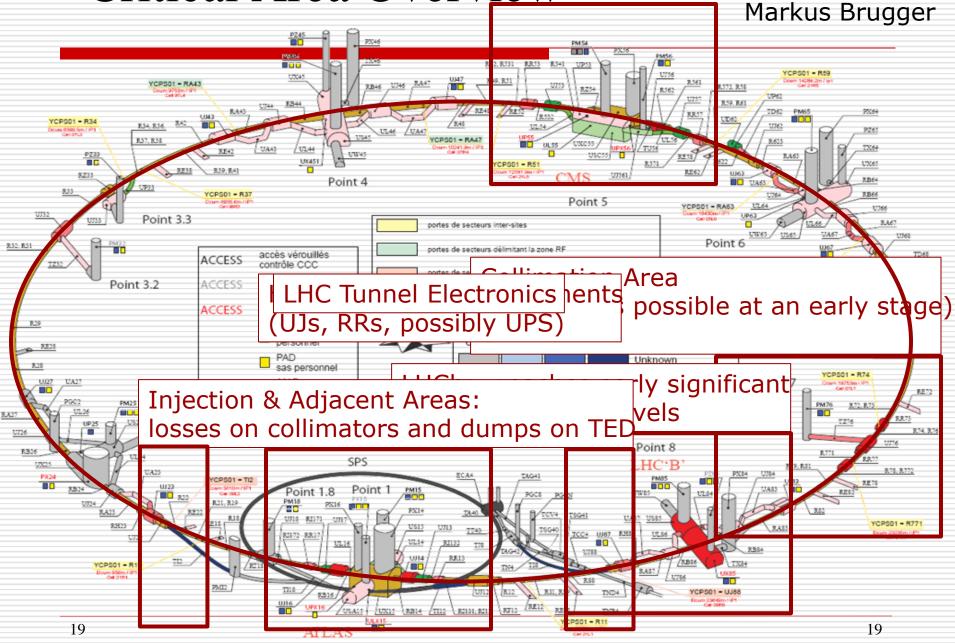
- Single Event Upset (SEU)
- Multiple Bit Upset (MBU)
- Single Event Transient (SET)
- Single Event functional Interrupt (SEFI)
- Hard Errors (non recoverable)
 - Single Event Latch-up (SEL)
 - Single Event Gate Rupture (SEGR)
 - Single Event Burn-out (SEB)

[Photos R. de Olivera EN/ICE]

A Few Numbers (xSections)

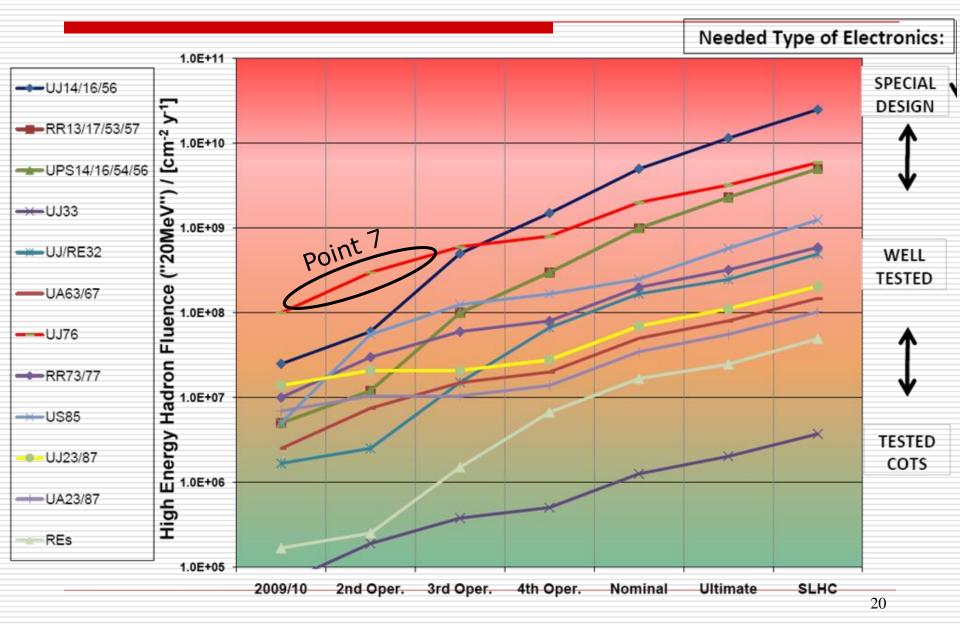
- PLC-S7-200, Profibus (CV):
- 24V DC Power Supply (CV):
- PLC-S7-300 (CV):
- PLC-Schneider (CV):
- WIC Rack PLC S7-300 + FM352-5 Siemens:
- Fire Detectors ASD:
- Ethernet Switch:

0


. . .

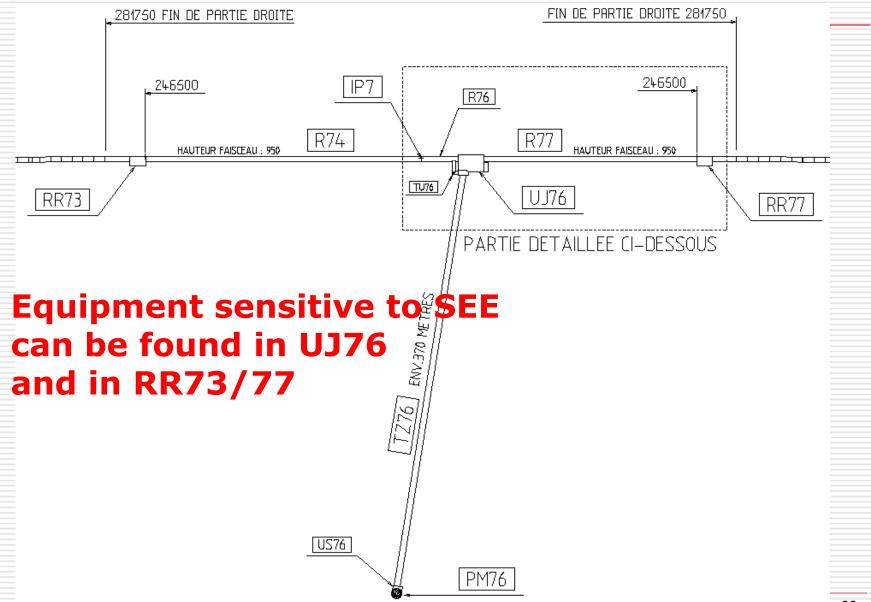
 $5.1x10^{-7} \text{ cm}^2$ ~1000 $3.6x10^{-9} \text{ cm}^2$ failures in
a nominal
year in
UJ14/16 $3.0x10^{-8} \text{ cm}^2$ year in
UJ14/16 $2.8x10^{-7} \text{ cm}^2$ UJ14/16(dominated by PS?) $2.0x10^{-7} \text{ cm}^2$

5.9x10⁻⁹ cm² 3.8x10⁻⁸ cm²


Other equipment: former test results, similar equipment, 10⁻⁷cm² or lower! <u>Uncertainty:</u> up to one order of magnitude (but both directions!)

Critical Area Overview

Summary Of Areas


Markus Brugger

Possible Strategies

Layout of Point 7

Point 7: status of relocation & shielding

Strategy for SEE mitigation is described in EDMS # 977085:

- Prepare space for relocation in TZ76
 - Enlargement over 130 m -> done
- Relocate in TZ76 what can be moved:

- Remaining equipment of 1^{st} floor of UJ76 \rightarrow slots assigned in TZ76

(thanks to ICL – J.P Corso & A.Tursun)

- Shield what cannot be moved:
 - Safe room in UJ76 side

➔ 40 cm of iron in place on the LHC tunnel

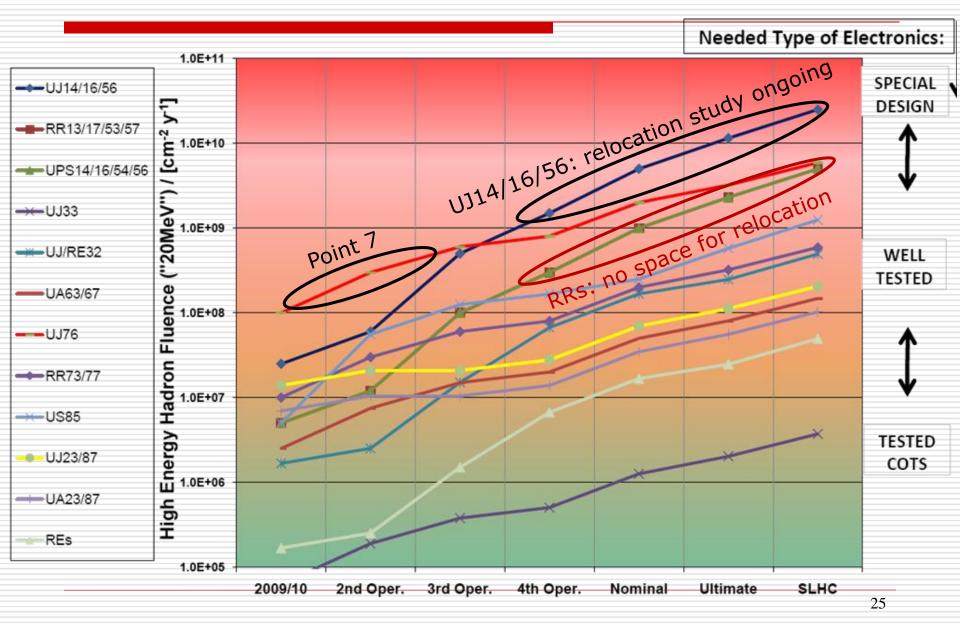
RR73 and RR77

→ 40 cm of iron and movable chicane in place

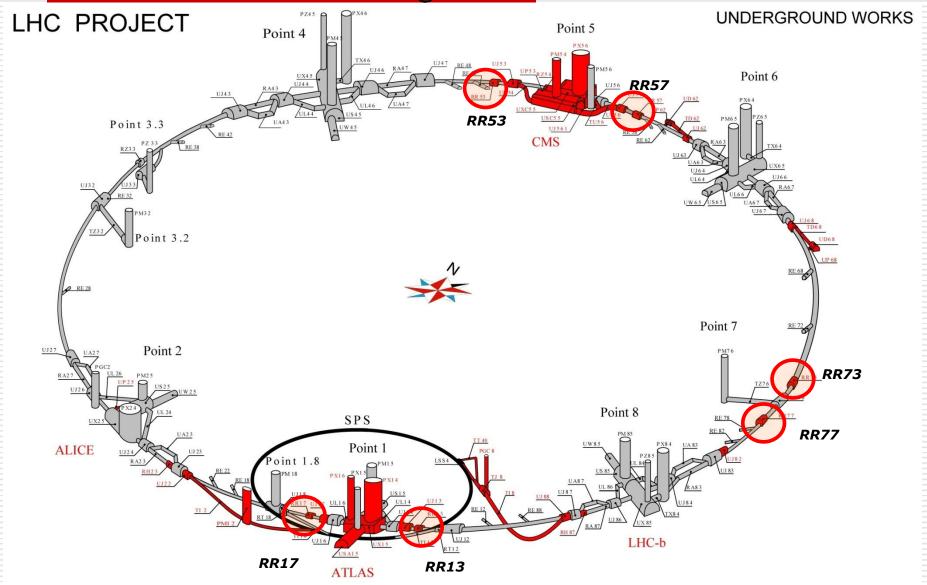
Insure QPS powering

Potential drastic accident

Relocation of the UPS


Now in TZ76 🔶

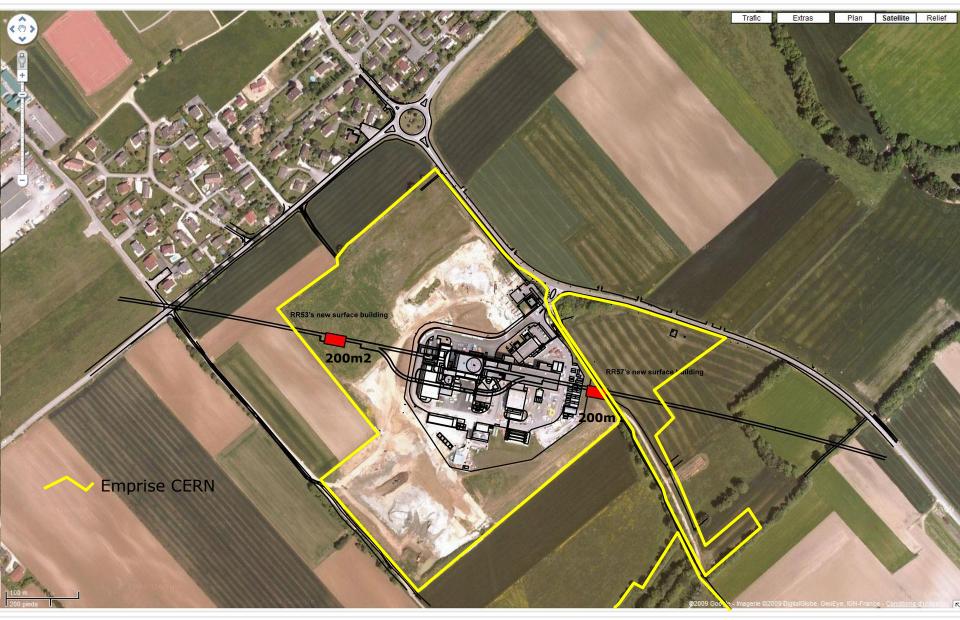
Before 2009 in UJ76




Summary Of Areas

Markus Brugger

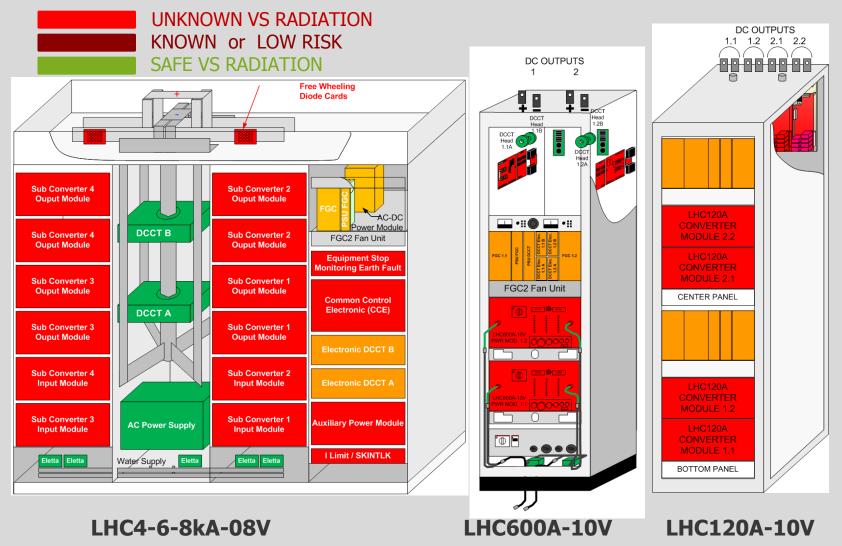
RR caverns with potential radiation concerns for underground electronics



Snapshot of C:\SMARTEAMProd_Tmp\kosmicki\CAD000283202.CATProduct - 12/9/2009 15:51:41

POINT 1 AREA – GOOGLE PICTURE & TUNNELS

POINT 5 AREA – GOOGLE PICTURE & TUNNELS

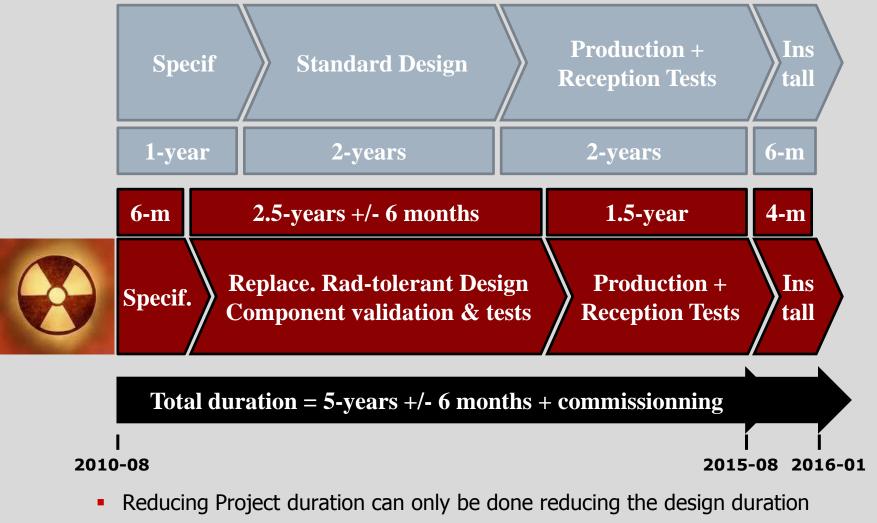

New Shafts and Caverns at Pt1&5: Cost and Schedule

John Osborne GS-SEM

																				•	<u> </u>		JSU	501		22-	-DE	11/1		
	RR13	R	R17	7		RR53	}		RR	57																				
Site Investigation (borehol						50'0		5	50'0	000										50'0										
Site Installation	1'000'000					500'0													'50											
5m diameter shaft	3'500'000		00'0			000'0				000'0	_								'00											
Base Cavern	2'000'000		00'0			000'0				000'0									'00											
Access gallery	750'000	7	50'0	000		750'0	00		750	000'0								3	'00	0'0	00	C								
10% Contingency for unkn	own/missir	ng it	ems	S														3	'06	55'()00	C								
													_					4	10.4											
12% Consultancy fees																		4	'04	S C	300	J								
											_					•••				~ • •										
											То	tal				CF	łF	37	'76	3'0	300	ו								
4 new shafts for LHC RR Caverns	- Planning																													
					20)10					201	1						20)12							2	2013	}		
			1 2	3 4	56	7 8 9	10 1	1 12	1 2	3 4 5	56	7 8 9	9 10	11 12	1	2 3	4 ;	56	7	89	10	11 1:	2 1	2	3 4	5	6 7	8 9	9 10	11
Assuming "LHC type" procurement							ſ									-														
				Å							DR/	\FT																		
Project Approval				M																										
Preparation of concept documents						Lead						tion									_	hs 1	for	r Ci	E					
Market Survey for Design & Supervision		works 18months																												
Market Survey for Construction Contract						18m0	ntr	າຣ																						
Site investigation																														
Building permit application																														
Call for Tender for Design & Supervision	Contract																													
Preparation of detailed tender documents	S																													
Call for Tender for Construction Contract																										2	0			٨
Construction																														X

2) DEVELOP SEE TOLERANT LHC POWER CONVERTERS

Overview of unknown or critical Items



TE EPC

LPC

SEE TOLERANT PC PROJECT DEVELOPMENT TIME

□ LHC Project Typical Development times Standard vs Rad-Tol

• Less design time = Higher risk of producing sensitive converter \rightarrow coherence???

PC

Yves Thurel / CERN

3) Relocation with Supra-Conducting Links

Amalia Ballarino

Assumptions for the present study:

At P1 and P5 the preferred solution is the re-location of the LHC power converters in surface building . Priority is given to the RRs.

→ Vertical link

> At P7 there is the possibility of a re-location in TZ76.

(Already done at Pt3 with Nb-Ti at 4.5K, L>400m)

A. Ballarino

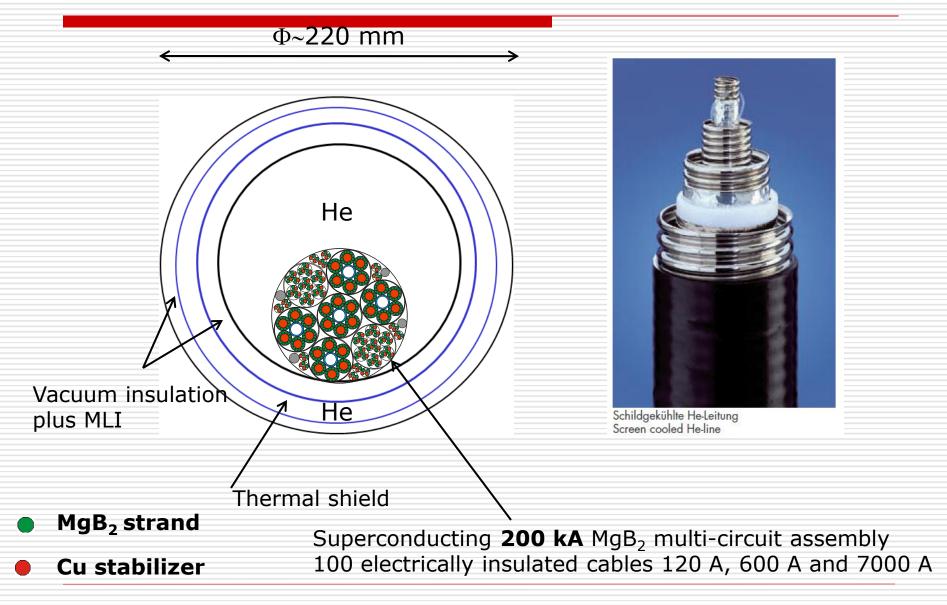
R2E-Workshop, 10 June 2010

Cryogenic environment (4.5 K LHe in the DFBs)


Vertical SC Power Links

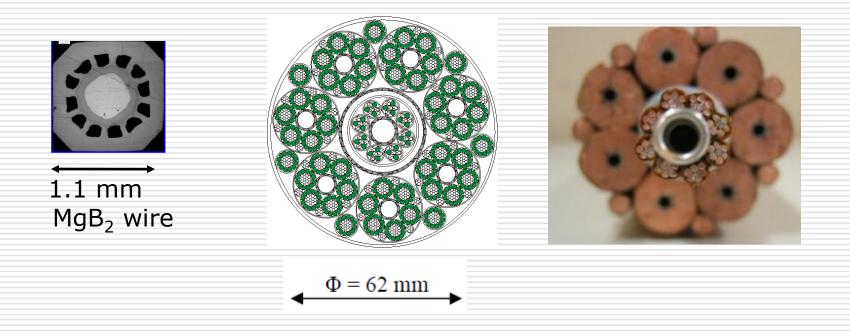
Cold powering system:

 Current leads in a distribution cryostat (near the power converters);
 Vertical electrical transfer (link);
 Horizontal electrical transfer (link);


- 4) Cryogenic fluid supply and control;
- 5) Interconnection to the magnets bus system;
- 6) Protection of link and current leads.

A. Ballarino

RAD2-Workshop, 10 June 2010


Configuration of superconducting link

A. Ballarino

R2E-Workshop, 10 June 2010

Superconducting MgB₂ multi-circuit cables

Superconducting fully transposed and stabilized cables with a total current capability of ~120 kA were already assembled at CERN last year. Sub-cables were tested at CERN at currents of up to 18 kA (@ 4.5 K and in self-field)

A. Ballarino

Conductors for the superconducting link

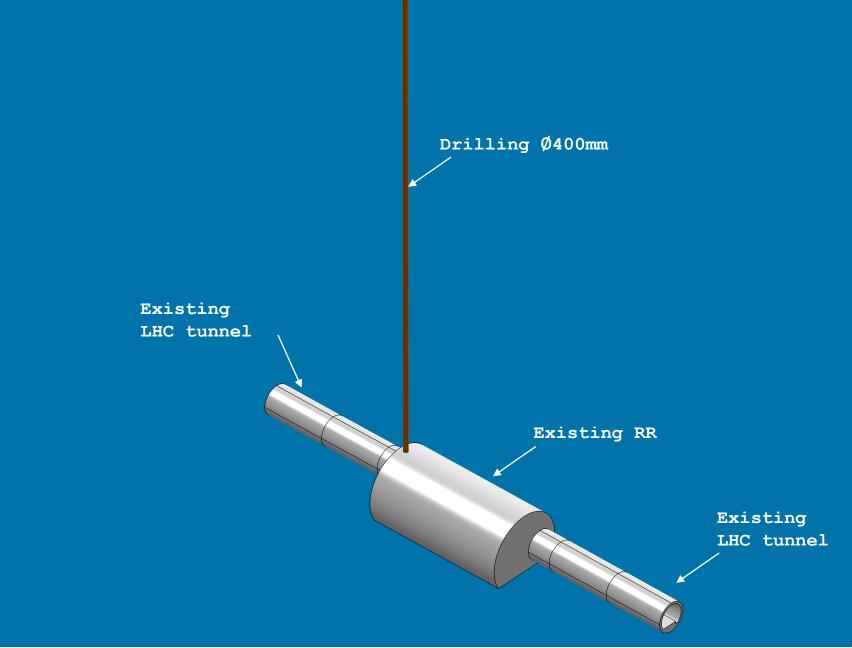
Nb-Ti \rightarrow Tmax \leq 7 K (Tc = 9 K)

 $MgB_2 \rightarrow Tmax \le 20-25 \text{ K} \text{ (Tc} = 39 \text{ K)}$

Bi-2223 or Y-123 \rightarrow Tmax \leq 77 K (Tc > 90 K)

Temperature margin:

- Capability of adsorbing higher heat loads;
- -Increased stability of the superconductor (lower sensitivity to thermal or mechanical disturbances).



A. Ballarino

R2E-Workshop, 10 June 2010

Temperature margin

3) Drill vertical boring from new <u>surface</u> building to re-locate equipment

- Relatively quick CE technique
- Only possible for maximum 40cm internal diameter tube down to RR's, is this sufficient ?
- Risk associated with core this deep eg boulders in moraines, tolerances
- Building permit required for surface buildings

Could envisage horizontal trenches to convey the SC power links into the existing surface buildings at Pt 1 & 5 (+200m of link each time)

Vertical borings and new surface buildings at Pt1&5: Cost and Schedule

Cost es	stimate	for CE	for 40ci	m borings						J	ohn Osborr	ne GS-SEM
				RR13	RR17	RR53	RR57					
Site Investigation (boreholes) 50'000						50'000	50'000		150'000		POINT 1	POINT 5
Site Insta	allation			500'000		1'000'000			1'500'000	Hauteur	80m	90m
40cm co	re			450'000	450'000	700'000	650'000		2'250'000	Diametre	40cm	40cm
Base Ca	vern mo	dificatio	ns	50'000	50'000	50'000	50'000		200'000	Morraines	0 à -20m	0 à -50
Surface Buildings 200m2			1'000'000	1'000'000	1'000'000	1'000'000		4'000'000	Molasse	-20m à -	-50m à -90m	
10% Contingency for unknown/missing items								810'000				
12% Cor	nsultanc	y fees							1'069'200			
								Total	CHF 9'979'200			
	ESTIMA	TE ACC	URACY +/-	- 20%								

4 new 40cm diameter drillings to LHC RR Caverns - Planning 2012 2010 2011 2013 7 2 3 4 5 9 10 2 3 4 5 6 7 8 9 10 11 9 10 11 2 3 5 8 9 10 Assuming "LHC type" procurement DRAFT Project Approval Preparation of concept documents Market Survey for Design & Supervision Contract Market Survey for Construction Contract Site investigation Building permit application Call for Tender for Design & Supervision Contract Preparation of detailed tender documents Call for Tender for Construction Contract Construction

Lead time for construction 12 months for CE work to start approx. works 18months

Summary

Helium release issues and Single Event Effects mitigation are totally different subjects, but the main and obvious lesson is the same: These problems need to be addressed at an early stage of the project, late fixing is difficult, very expensive, long to achieve and usually not fully satisfactory.