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A dedicated designA dedicated design
The inner double-sided layer

Granularity ← pointing resolution s.p.≤ 3 µm

Readout speed ← occupancy from beam background

Separate spatial resolution & time resolution
on each layer

The two outer double-sided layers

Granularity ← track to VXD hit association

“Reduced” readout speed ← Power dissipation

Lower #pixels but good charge estimation/pixel

Other constraints

Material budget ≤ 0.16 % X0 / layer

Radiation tolerance 
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A generic achitectureA generic achitecture
Speed = sparsification

Include CDS (correlated double sampling) 
in pixel

Discriminate pixel output

Suppress zeros

⇒ column parallel binary output

Very few rows powered at a time
→ Low power dissipation

Spatial resol. (inner layer, side 1)

Pixel pitch 16x16 µm2, binary output

1.9 cm2 of  sensitive area
2x320 rows of  1152 columns

Two-sided readout @ clock(100MHz)

s.p.≤ 3 µm, integration time ≤ 50 µs

Time resol. (inner layer, side 2)

Pixel pitch 16x64-80 µm2, binary output

1.9 cm2 of  sensitive area
160 rows of  1152 columns

Single-sided readout

s.p. ~ O(5) µm, integration time ≤ 10 µs

For power dissipation (outer layers)

Pixel pitch 35x35 µm2, 4-bits ADC output

4 cm2 of  sensitive area
576 rows of  576 columns

s.p. ~ 4 µm, integration time ≤ 100 µs
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Generic architecture validationGeneric architecture validation
Full size : MIMOSA 26 (EUDET final sensor)

Process AMS 0.35 µm OPTO

Fabricated end 2008 and thinned down to 120 µm

Yield from 80 to 90% depending on quality required

Pixel array:
1152x576 ~ 0.7 Mpixels
pitch 18.4 µm
→ Sensitive surface 10.6x21.2 mm2

Analog outputs 
for test only

zero-suppression

1152 discriminators

control (JTAG+DAC)

Memory for binary out
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Pixel array:
1152x576 ~ 0.7 Mpixels
pitch 18.4 µm
→ Sensitive surface 10.6x21.2 mm2
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Back plane

Electronic side
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Radiation tolerance improvementRadiation tolerance improvement
For a better charge collection

Standard process epitaxial  layer 

resistivity ~10 Ohm.cm → charges drift ONLY thermally 

Low-doped epitaxial layer

 resistivity ≫100 Ohm.cm “HR” grade → deeper depletion

Note: depletion level depends on diode voltage

Expected shorter collection time 
& charges more spatially focused

Prototype: MIMOSA 26-AHR

Process AMS 0.35 µm OPTO with 400 Ohm.cm  epi. layer

Exact same layout / MIMOSA 26

Fabricated in 2009 with 3 composite epi.: 10, 15 & 20 µm thick

Yield at least as good as std. Epi. Layer

Test in lab with Ru source (MIP-like )
S/N x 1.5 to 2 from std to HR epi.
(depending on epi. thickness)

Irradiated sensors at

150, 300, 500, 1000  kRad

3., 6., 10., 30. 1012 neq/cm2 
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MIMOSA 26 performancesMIMOSA 26 performances

120 GeV π- beam tests

With High Resistivity layer

With typical threshold ~6 x noise: Effi ~ 99.5 %, fake ~ 10-5 hits/pixel, 
s.p.

 ~ 3.5 µm

Readout speed with 80 MHz clock: 115 µs 

Performances checked to hold up to 1013 neq/cm2 

High resistivity (400 .cm), 15 µm thick epitaxial layer

Irradiated at 1.1013 neq/cm2

operation at 0 °C

! shift of  .5 µm in resolution
 (due to alignment) After 1013 n

eq
/cm2, 

@ T=0 °C

@ Controlled temperature 20 °C
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Optimized pixel for HR epi. layerOptimized pixel for HR epi. layer
MIMOSA 22-AHR = pixels + discri. only

Process AMS 0.35 µm OPTO
with 400 Ohm.cm resistivity

Digital part: 128 columns x 576 rows
Analog part: 8 columns x 576 rows

Fabricated 2010 with 3 epi: 10, 15 & 20 µm thick

New pixel designs

Different amplification schemes & diode biasing

Different pitch 18.4, 20.7 µm & elongated pixels

Irradiated sensors at

150 kRad or 3., 6.1012 neq/cm2 

Combined 150 Krad + 3.1012 neq/cm2  

Operation tr.o.= 92.5 µs (80 MHz), T=20 °C

Beam test in late summer 2010 with 120 GeV π- 

18.4 µm

20.7 µm

elongated

18.4 µm pitch

Improvements observed

Lower fake hit rate achievable @ ~100% efficiency
below 1 hit/frame on the full matrix

Spatial resolution reaches 3µm: -0.5 µm with same pixel pitch

Performances stability with irradiation under studyD
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Integration studiesIntegration studies
The PLUME project (see Ingrid Gregor's talk)

Double sided ladder (2x6 Mimosa 26) @ 0.3% X0

Passive cooling: air flow

Power pulsing

Collab.: Bristol U., DESY, Oxford U., IPHC

Several iterations over 2009-2012 (Current proto @ 0.6%X0)

Classical “secured” sandwich: separated parts bonded together

An “aggressive” alternative: SERWIETE

Embed an ultra-thin sensor in a custom made flex cable

cable+sensor sheet ≤ 0.15 % X0 

“single” operation

Collab.: IKF-Frankfurt, GSI-Darmstadt, IPHC

Technology provided by IMEC-Belgium

First trial with an analog sensor of  ~0.5 cm2 ongoing

Other alternative with stitching: all-silicon ladder
MIMOSA 18 embedded
on a 50µm kapton, 1µm Cu cable
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Next step 1: final architecturesNext step 1: final architectures
Two-sided readout with small pitch sensor

MIMOSA 29, AMS  0.35 µm OPTO

Pitch 16x16 µm2

Two-sided readout → 50 µs readout time

Submission in 2011

 4-bits digital sensor

MIMOSA 30, AMS 0.35 µm OPTO

Several ADC prototypes  already studied (low power & area)

Readout time ≤ 100 µs

Studies on analog sensor with off-line digitization : s.p.~  2 µm with a 20 µm pitch 

Submission in 2011

Elongated pixel sensor

Already studied with MIMOSA 22 AHR (2010)

Pitch 18.4 µm x 73.6 µm tested  (last week) with 120 GeV π-
 → 100 % efficiency, 

s.p
. ~ 6 µm

Final version: pitch 16 µm x 64 to 80 µm for tr.o. ~ 10 µs 

 large pitch validated
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Next step 2: bigger systemsNext step 2: bigger systems
Within the AIDA FP7 project (2011-2014)

Large Area Telescope

Provide a facility for beam test with 5x5 cm2 
sensitive area

Produce stitched sensors 
(could be interesting for ladder integration)

Operation of  final architecture sensors 
(inner layer)

Alignment Investigation Device: AID box

Performance assessment of  double sided 
ladders in “real” environment

Power pulsing operation

Air cooling

Alignment strategy development 

Use PLUME ladders AIDA setup

Large Area Tel.

AID box
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Next step 3: VDSM processNext step 3: VDSM process
Motivations for Very Deep Sub-Micrometer processes

Smaller pitch → Better spatial resolution

Higher number of  metal layers + smaller feature size → Smaller insensitive area 

Lower line capacitance → Higher clock freq. (+15 to 20%) → increased readout speed

Thinner gate oxyde → Higher ionizing radiation

2010

Design analog sensor MIMOSA 27 in XFAB 0.18 µm OPTO

16.4 kPixels over 10 mm2  with  16 different pixel options

2011 & 2012

In-beam tests of  MIMOSA 27

Design of  building blocks for column // binary readout

In-pixel CDS matrix + discriminator

Zero suppression logic and readout memomries

2013

Submission of  full size, complete functionalities, prototype
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Non-DBD activitiesNon-DBD activities
The first vertex detector with CMOS sensor

STAR @ RHIC: heavy ion collisions

With LBNL

ULTIMATE sensor ~2x2 cm2 @ tr.o.~ 200 µs
based on MIMOSA 26

Single material budget ~0.37 % X0

Submission 2010, physics by 2013

Other VXD following (CBM@SIS, ALICE@LHC, ...)

Exploiting the full CMOS technological potential

3D integration technologies → 1 functionality per tier

From “standard” CMOS pixel (granular, thin & fast)
To “intelligent sensors” (granular, thin, ultra-fast, ultra-rad.tol.)

Targets: ILC 1TeV, CLIC (5-10 ns) 

CAIRN series, started in 2009 within international HEP consortium

mailto:CBM@SIS
mailto:ALICE@LHC
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SUMMARYSUMMARY

NOW

Fast binary architecture validated on full scale sensor

tr.o. = 85  µs (for 576 rows), s.p. ~ 3 µm @ 18.4 µm pitch

≥ 99.5 % efficiency for ≤ 10-6 fake hit/pixel @ 3.1012 neq/cm2 + 150 kRad

ILD-DBD 2012

Prototypes for each layer validated

16x16 µm2 @ 50 µs  /  16x64 µm2 @ 10 µs  /  16x16 µm2 + 4bits-ADC

Ladder demonstrator at ~0.3 % X0

Besides ILD-DBD

From 2012: real physics with CMOS pixels (c-tagging, ...)

3D sensors

Road to CLIC requirements

Large surface with large pitch

Road to larger tracker
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BACKUPsBACKUPs
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MAPS, the basicsMAPS, the basics

Technology

Industry standard for ICs

All processes not optimized

Epitaxial layer thickness 

# metal layers

Nwell – Psubstrate junction

Intrinsically thin sensorsIntrinsically thin sensors

sensitive layer ~10-20 µm

Small MIP signal, few 100 e- per pixel → requires low pixel noise requires low pixel noise OO(10 e-)(10 e-)

Substrate almost useless

Few µm enough, total thickness could reach 20 µm

Monolithic & active

No external IC required in vicinity

Potential barrier

P++

P-

P+ N+
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MAPS, standard performancesMAPS, standard performances

From the MIMOSA family

Developed at IPHC-Strasbourg

AMS 0.35 µm process, ~11 µm epitaxial layer

3 transistors pixel - Sequential analogue readout

Performances assessed also @ 50 µm thickness50 µm thickness

Thinning routinely achieve by industry

Hit rate

With parallel analog outputsanalog outputs

1Mpixels ~ 1ms r.o, time~ 1ms r.o, time

Radiation tolerance

Ionizing: ~Mrad~Mrad

Non-ionizing: few 10few 101212 n neqeq/cm/cm22  

Integration time 
and temperature dependant
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Vertex detector figures of  meritVertex detector figures of  merit

M
APS developm

ent trend
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Chronogram of  column // readoutChronogram of  column // readout

Parameters driving 

the readout time of  a single row

Clock frequency

Duration of  each control signal,
the latter is impacted by

Column length

Process feature size
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MIMOSA 26 performancesMIMOSA 26 performances
Beam test setup

2009 & 2010 campaigns at CERN SPS with 120 GeV π- 

Using IPHC DAS based on NI-PXI digital IO board → event rate ~ kHz 

Operating at 80 MHz (tr.o.= 115 µs) and T=20 °C   (80 Mbits/s @ output)

Thresholding strategy validation
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Time resolution in rolling-shutterTime resolution in rolling-shutter
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