

The DEPFET Active Pixel Sensor High Precision Vertex Detector for Belle-II and Future e+e- Colliders

Jelena Ninkovic for the DEPFET Collaboration (www.depfet.org)

1

DEPFET basics

- fully depleted sensitive volume
 - fast signal rise time (~ns), small cluster size
- fabrication at MPI Semiconductor Lab (MPI HLL)
 - Wafer scale devices possible
 - no stitching, 100% fill factor
- no charge transfer needed
 - faster read out
 - better radiation tolerance
- charge collection in "off" state, read out on demand
 - potentially low power device
- internal amplification
 - charge-to-current conversion
 - Iarge signal, even for thin devices
 - r/o cap. independent of sensor thickness
 - Matrix read out in "Rolling shutter" mode
 - select row with external gate, read current, clear DEPFET
 - two different auxiliary ASICs needed, but no interconnect in sensitive area
 - only few rows active \rightarrow low power consumption

Past...Present...Future

DEPFETs for the ILC VXD

- ✓ Many years of R&D \rightarrow www.depfet.org and the "Backup Document"
- ✓ Prototype System with DEPFETs (450µm), CURO and Switcher
- ✓ Many beam tests at DESY and CERN
- \checkmark Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 μm ... ~100 μm),
- ✓ radiation tolerance tested with single pixel structures up to 4 Mrad and $\sim 10^{12} n_{eo}/cm^2$

Test Beam Campaign 2008 and 2009

The goal was to:

- prepare the necessary tools for a fast and efficient testing of the DEPFETs
 - construct a robust telescope with excellent resolution
- gain experience in running DEPFETs in a "real" environment
- test new and more ambitious DEPFET cells
- → CERN SPS H6 beam line 2008 and 2009
- stand alone DEPFET telescope and integration as a DUT in the EUDET telescope

DEPFET Telescope and System

 5 telescope planes with "standard" DEPFET matrices, 450 µm thick

- 32x24 µm² pixel size
- 2008: 64x128 pixels
- 2009: new readout board for 64x256 matrices
- one device under test (DUT)
 - 2008: 64x128 pixels, 24x24 µm² on the rotation stage
 - 2009: 64x256 pixels
 - 20x20 µm² with shorter gate length
 - capacitively coupled clear gate (...better clear)
- all devices characterized in the lab before test beam
- Test beam program:
 - high statistics run for in-pixel studies
 - angular scans
 - "clear" parameter and depletion voltage scans
 - Beam energy scan...

IWLC2010

halbleiterlabor

"a small technicality"

Since summer 2009:

- Dedicated DEPFET power supply systems available, one per module
- "plug-and-play" DEPFET telescope

TB 2008

Typical clusters and signals

Gain map: Deviation from average seed signal

IWLC2010

halbleiterlabor

TB2009

- TB2009, 120 GeV pions, 90°, 32 x 24 µm² pixel,
- L=6 µm
- capacitively coupled clear gate → better clear
- TB2009, 120 GeV pions, 90°, 20 x 20 μm² pixel,
- L=5 µm (just 1 µm shorter) → higher g_q....

8

TB2008: angular scan

+ + + mpi + halbleiterlabor

TB2008, 120 GeV pions, 90°±5° , 24 x 24 μm^2 pixel

- stronger charge sharing \rightarrow cluster size bigger
- total charge does not change (of course)
- residuals and resolution degrades strongly beyond 4°
- slight improvement of the x residuals between 1° and 3°

- → Important input for the simulation chain (digitizer)
- → Extrapolation to thin sensors and optimization of the sensitive thickness for Belle II

TB2009	Best DU	T (20x20µm²)	Telescope	e (32x24µm²)
120GeV pions	Х	Y	Х	Y
Residuals	1.54	1.42	1.98	1.61
Resolution	1.10	1.00	1.60	1.20

Check performance of different designs common clear gate: capacitively coupled clear gate: common clear gate:

Results are for ILC designed sensors (small pixel pitch) and thick detectors Comparison and tuning of MC simulations => performance at Belle II

ILC vs. Belle II

Higher beam induced background at superKEKB

-QED background, beam-gas interactions and synchrotron radiation

ILC needs excellent IP resolution over a large momentum range:

- Low material \rightarrow thin ladders down to the very forward region
- Good single point resolution (σ = 3-5 µm) \rightarrow small pixels (24µm)

superKEKB is dominated by low momentum tracks (< 1GeV/c):

- Low material!!!
- but IP resolution always dominated by MS error (beampipe & 0.14% X_0 Si) of ~ 9 μ m at 1 GeV/c

\rightarrow Modest intrinsic resolution of σ ~ 10 μm sufficient: pixels could be larger

Belle II:

more challenging than ILC!
(background, radiation, power)
tight schedule (2014) to
develop a compete detector
system

Focus on Belle II, \rightarrow will boost detector R&D for future e⁺e⁻ colliders

Tasks: optimize for larger pixels and radiation hardness

	ILC	Belle II
occupancy	0.13 hits/µm²/s	0.4 hits/µm²/s
radiation	~100 krad/year	~1 Mrad/year
Duty cycle	1/200	1
Frame readout time	25 μs – 50 μs	20 µs
Pixel size	25 x 25 μm²	50 x (50-75) μm²

Jelena Ninkovic, MPI HLL Munich

Belle II ladder

- All silicon module, sensitive area (DEPFETs) thinned
- Length: 90mm (inner), 123mm (outer), divided in half ladders
- 23 mm insensitive silicon on both sides (EOS)
- ASICs flip chipped to silicon substrate
- Insensitive part used as substrate for ASICs (MCM-D)

	Inner layer	Outer layer
# ladders	8	12
Radius	1.4 cm	2.2 cm
Pixel size	50x50 μm²	50x75 μm²
# pixels	1600(z)x250(R-⊕)	1600(z)x250(R-⊕)
Thickness	75 μm	75 μm

Belle II PXD in total ~8Mpixels

Sensor Thinning

First thin Belle II DEPFET prototypes are in the final stage of the production

Micro joint between half-ladders

+ + + mpi + halbleiterlabor

-butt joint between two half-ladders

-reinforced with 3 triangular ceramic inserts at the frame

-about 2x300µm dead area per ladder

IWLC2010

Material budget – measured!!

Mass in the sensitive region only, 1st layer, 90x15 mm²: 0.36 g

 $\rho_{Si}=2.33 \text{ g/cm}^3 \rightarrow \text{eq.}$ Si thickness in sensitive area: 12

 $X_0(Si)=9.36 \text{ cm} \rightarrow \text{Radiation length in the } 1^{\text{st}} \text{ layer:}$

120 µm

0.125 %X₀ (Silicon only)

Theoretical calculation:

sensitive region:	0.053 %
silicon frame:	0.076 %
	0.129 %

The rest is the copper layer and bumps ..

Calculated : 0.18 % X_0 (75 µm top, 450 µm frame)

IWLC2010

Jelena Ninkovic, MPI HLL Munich

Support structure

Down to -40°C in the end of the stave

mpi halbleiterlabor

27

Support structure

mpi

CAD drawings

NIKKO-SIDE

148

106

186

Summary

- the high-precision, low mass DEPFET Pixel Detector (PXD) for Belle II is in the construction phase
 - the first thinned sensor prototypes are currently in production (almost done)
 - Work packages within the DEPFET collaboration are covering all aspects of PXD (ASICs, mechanical, thermal, DAQ ...)
 - this project gives a strong push for the DEPFET@future e⁺e⁻ colliders, many techniques developed for Belle II are also applicable at future e⁺e⁻ colliders
- testing infrastructure is being set up, a high-precision "plug-and-play" DEPFET telescope is ready for the prototype tests in the beam
- results of the recent beam test in summer 2009 at the CERN SPS show a substantial improvement of the internal amplification and the S/N of the system – an important step for the design of the final Belle II sensors
- this high-precision telescope with its huge S/N may lead to more insight in what is going on when a charged particle interacts with the silicon of the sensor

halbleiterlabo

I did not talk about: Radiation tolerance Auxiliary ASICs Data acquisition and slow control

. . . .

PXD for BELLE - II DEPFET Collaboration design and mockup by MPI Munich

