TD18 post-mortem SEM observation: Findings, Questions and Answers

Markus Aicheler

13. Oct. 2010

First cell

a [mm]	4.06
d [mm]	2.794
е	1.21
f [GHz]	11.424
Q(Cu)	5100
vg/c [%]	2.23
r'/Q [LinacΩ/m]	10200
Es/Ea	2.0
Hs/Ea [mA/V]	6.0
Sc/Ea ² [mA/V]	0.53

Courtesy of Alexej Grudiev

Strategy of the presentation:

Part 1: Introduction and a little microscopic walk through "part B"

Part 2: An unexpected finding...

Part 3: Current observation method and next steps

Part B
Up-stream side - Iris north!

EHT = 5.00 kV WD = 29.4 mm Signal A = SE2 TD18 KEK-SLAC Part B Tilt 30° Up-Stream -- Iris N Mag = 50 X Markus Aicheler Date :8 Sep 2010

Part B
Up-stream side - Cell Wall north-west!

EHT = 5.00 kV WD = 25.9 mm Signal A = SE2

TD18 KEK-SLAC Part B Tilt 25° Up-Stream -- NW

Mag = 14 X Markus Aicheler Date :2 Sep 2010

10 μm

EH WI

EHT = 5.00 kV TD18 KEK-SLAC WD = 27.3 mm Part B Tilt 25° Signal A = SE2 Up-Stream -- NW

Mag = 1.00 K X Markus Aicheler Date :2 Sep 2010

Date :2 Sep 2010

Signal A = SE2

Date :2 Sep 2010

200 nm

EHT = 5.00 kV WD = 25.6 mm Signal A = SE2

TD18 KEK-SLAC Part B Tilt 25° Up-Stream -- NW Mag = 20.00 K X Markus Aicheler Date :2 Sep 2010

Part B
Down-stream side - Iris north!

EHT = 5.00 kV WD = 26.7 mm Signal A = SE2 TD18 KEK-SLAC Part B Tilt 30° Down-Stream -- Iris N Mag = 50 X Markus Aicheler Date :8 Sep 2010

Part B
Down-stream side – Cell Wall north-west!

EHT = 5.00 kV WD = 30.3 mm Signal A = SE2

TD18 KEK-SLAC Part B Tilt 30° Down-Stream -- Wall NW Mag = 12 X Markus Aicheler Date :8 Sep 2010

 $WD = 30.3 \, mm$ Signal A = SE2

Part B Tilt 30° Down-Stream -- Wall NW Markus Aicheler Date :8 Sep 2010

Signal A = SE2

Down-Stream -- Wall NW

Date :8 Sep 2010

WD = 30.1 mmSignal A = SE2

Part B Tilt 30° Down-Stream -- Wall NW Markus Aicheler Date :8 Sep 2010

WD = 30.1 mmSignal A = SE2

Part B Tilt 30° Down-Stream -- Wall NW Markus Aicheler Date :8 Sep 2010

Strategy of the presentation:

Part 1: Introduction and a little microscopic walk through "part B"

Part 2: An unexpected finding

Part 3: Current observation method and next steps

Part C
Down-stream side – Cell Wall S-W!
Tilt 30°

 $WD = 26.0 \, mm$ Signal A = SE2

Down-Stream -- Cell Wall N-W Stage at R = 45.6 °

Markus Aicheler Date :5 Oct 2010

Facts for part C down-stream side:

- 6 of 8 highest magnetic field regions exhibit this "B-Field arc"
- numerous breakdown sites are located around this feature expanding in direction to the waveguide entry

Part B
Up-stream side – Cell Wall N-W!
Tilt 30°

WD = 23.4 mmSignal A = SE2

Up-Stream -- Cell-Wall NW Stage at R = 46.9 °

Markus Aicheler Date :7 Oct 2010

Facts for part B up-stream side:

- no "B-Field arc"
- numerous breakdown sites are located at similar locations as on the other side of the cell
- additionally breakdowns found between the cell wall and the iris

Strategy of the presentation:

Part 1: Introduction and a little microscopic walk through "part B"

Part 2: From obvious to less obvious findings ⇒Formulation of question and explanation attempt.

Part 3: Current observation method and next steps

Current observation method on one slice side:

- Sample tilting 30° (more is not practical for SEM and less no access to outer cell wall and inner part of iris).
- Documentation of iris at 50x and 100x magnification.
- Documentation of 4x outer cell wall with each part both noses.
- Searching for eventual break down sites at 100x magnification

Next steps:

- Completing the observation set for the remaining 2 relevant slices (D+E).
- Image-Analysis of assembled Iris micrographs for circumferential (and maybe radial) crater distribution on iris.
- Proposal for observation and cutting strategy for remaining structure part

Thanks! ©

...any requests for observations?

Part B
Down-stream side - Iris north!

My favorites!

10 µm

EHT = 5.00 kV $WD = 26.7 \, mm$ Signal A = SE2

TD18 KEK-SLAC Part B Tilt 30° Down-Stream -- Iris N Mag = 1.00 K XMarkus Aicheler Date :8 Sep 2010

Yes, Worms!

EHT = 5.00 kV WD = 26.8 mm Signal A = SE2 TD18 KEK-SLAC
Part B Tilt 30°
Down-Stream -- Iris N

Mag = 5.00 K X Markus Aicheler Date :8 Sep 2010

Yes, Worms!

TD18 SE2

DC-Spark InLens

Molehills!

