

ILD integration - Update on inner structure -Matthieu Joré – October the 18th jore@lal.in2p3.fr In2p3

- Brief reminder
 - The ILD inner region
 - Goals of these calculations
- Calculations
 - Input data
 - Boundary conditions
 - Results
- Conclusions

ILD inner region

- Critical region of the ILD detector
- No mechanical studies performed
- The goals were to make rough calculations in order to
 - Check feasibility
 - Check the mechanical behavior
 - Estimate material budget for improving the simulation model
- Dimensions of the tube :
 - Rout : 329 (TPC Rin-1mm)
 - Lenght : 4700mm
- Criterias :
 - Max displacement around 0.1mm(?)
 - As thin as possible

- Components to be supported :
 - Vertex : 300g supported on FTD3
 - FTD : 500g / disks
 - SIT : estimated at 5Kg supported on FTD3
 - Beam pipe : ab. 15Kg with wires
 - Cables : ab. 15Kg supported with FTD disks (ab. 1Kg/disks)
- Material : Carbone fiber / epoxy composite :
 - Young modulus : 50GPa
 - Density : 1750Kg/m3
 - First assumed to be isotropic
 - Realistic with the pure traction/compression loading (flexure of the tube)

Weight estimation

Details on weight calculation (semi tube model) :

P1 = P_VTX/2+P_SIT/2+cables +BP/2*30% = 0,15+2,5+3+2 ≈ 8Kg P2 = FTD+cables/FTD = 0,5 + 1 = 1,5Kg P3 = BP/2*70% = 5Kg

Total weight to be supported \approx 30Kg

FEA model

 \bullet

• Stress

• Natural frequencies:

MDI Integration @ CERN

M. Joré – Updates on inner region support

- Rough estimation seems fine :
 - Max displacement of about 0,1mm
 - First resonant frequency at 90Hz
 - Thickness of tube could be 1mm of CFRP (P≈20Kg)
 - 0,33% X0
 - → Could be implemented in the simulation
- But effort is needed to produce a more detailed design, needed for DBD 2012 :
 - Reduce X0?
 - Improve simulation with real composite properties
 - Who could perform this because I'm not expert on CFRP structure?
 - How to split the tube?
 - Connection pieces (more material)
 - Connection to TPC (more material)
 - Design of BP wire supporting system
 - Add holes for assembly (use of temporary support)