Status and Update on Fermilab Linear Collider BPM R&D

Manfred Wendt Fermilab

Thanks to the many colleagues from KEK, CERN and Fermilab, helping with these collaboration activities!

- Cavity BPM Introduction
- CLIC/CTF cavity BPM R&D
- Cold ILC cavity BPM R&D
- ATF Damping Ring BPM read-out system R&D
- Summary

ШЬ

Cavity BPM Principle

- "Pillbox" cavity BPM
 - Eigenmodes:

$$f_{mnp} = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}} \sqrt{\left(\frac{j_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

- Beam couples to $E_x = CJ_1\left(\frac{j_{11}r}{R}\right)\cos \emptyset e^{i\omega t}$ dipole (TM₁₁₀) and monopole (TM₀₁₀) modes
- Common mode (TM₀₁₀) suppression by frequency discrimination
- Orthogonal dipole mode polarization (xy cross talk)
- Transient (single bunch) response (Q_L)
- Normalization and phase reference

CM-"free" Cavity BPM IIL

- Waveguide TE_{01} -mode HP-filter $f_{010} < f_{10} = \frac{1}{2a\sqrt{\epsilon\mu}} < f_{110}$ between cavity and coaxial output port
- Finite Q of TM₀₁₀ still pollutes the TM₁₁₀ dipole mode!

- WG-loaded, low-Q X-Band design (Fermilab-CERN)
 - $Q_{\ell} \approx 260$, resonator material: 304 stainless steel
 - CTF prototype includes a monopole mode reference cavity (same frequency)
 - ~50 nsec time resolution, <50 nm spatial resolution</p>
- EM design, tolerances, signal characteristics, etc. finalized.
- CTF prototype mechanical design is almost finalized.

- Started CLIC ML BPM with $f_{110} = 14$ GHz
 - Analyzed beam spectrum response for single bunches and bunch trains, including WG TM₀₁₀ mode suppression, etc.
 - Investigated different cavity-WG coupling schemas.
 - Detailed analysis of mechanical tolerances,
 e.g. on the cavity-WG coupling slot (tilt, shift, rotation, etc.)
 - Minimized TM₀₁₀ mode leakage
 - Compared different WG-coax output symmetries
 - Minimize xy-cross coupling
 - Set limits to mechanical tolerances (<±5 µm)
- Added monopole-mode reference resonator $f_{010} = 10$ GHz
- Modified design to CTF bunch frequencies (S-band)
 - Both resonators now operate at 15 GHz
 - Verified sufficient distance (coupling due to evanescent fields)

EM Simulation Details

10/20/2010

ilr iit

IWLC2010 Workshop

10/20/2010

IWLC2010 Workshop

- Manufacture 1st CLIC/CTF Main Linac BPM prototype
 - Have quotes for feedthroughs
 - Construction drawings are almost ready, dimensions are frozen.
 - RF tests and verification of the BPM, allow for small modifications to correct resonance frequencies / Q-values.
- Produce three CTF BPMs for installation in CTF3
- Start R&D on 15 GHz analog/digital read-out system

- ILC beam parameters, e.g.
 - Macro pulse length t_{pulse} = 800 µs
 - Bunch-to-bunch spacing $\Delta t_{\rm b} \approx 370$ ns
 - Nominal bunch charge = 3.2 nC
- Beam dynamic requirements
 - < 1 µm resolution, single bunch (emittance preservation, beam jitter sources)
 - Absolute accuracy < 200 μm
 - Sufficient dynamic range (intensity & position)
- Cryomodule quad/BPM package
 - Limited real estate, 78 mm beam pipe diameter!
 - Operation at cryogenic temperatures (2-10 K)
 - Clean-room class 100 and UHV certification

10/20/2010

Cold L-Band ILC BPM R&D

- First "warm" prototype finalized
- Started with RF characterization
- Could be installed into a beam-line

First RF Measurements

Direct-Coupled Signals

WG-Coupled Signals

- Very preliminary!
 - Setup not optimized
 - Cavity not yet tuned
 - xy-cross not analyzed
 - WG-coax transitions not tuned

ATF Damping Ring BPM R&D

ilr

ATF DR BPMs: New Hardware

cic

Improvements on the analog downconverter

CAN-bus controls, IF filter, remote diagnostics, etc.

New RF, DC & CAN-bus distribution. Grounding of tunnel hardware.

Switch to in-house VME digitizer

8-ch. ,125 MSPS ADC (serial outputs), Cylcone III FPGA, PLLlocked CLK distribution

Able to measure Injection TBT, Narrowband Orbit, Narrowband Calibration , and Last Turn on every injection

- Narrowband orbit for each injection (shot) is measured
 - The mean orbit and rms over 160ms is reported for Horz, Vert
- For each data set, 128 shots are collected
 - Large shot to shot mean orbit variations are observed in both
 - Horizontal shows larger RMS than vertical -> Beam related

- Use SVD to look for correlated motion and estimate resolutions
 - Ignoring beam effects, the horizontal and vertical resolution of the pickup/electronics should be the same...
 - Remove first 8 modes: ~0.5 μm resolution (no CAL)
 - Indication of issues with the automatic gain correction system (CAL)

ATF DR BPMs: TBT Studies

Theory: • TBT data at j^{th} BPM (single kick) $z_n^j = \frac{1}{2} \sqrt{\beta_z^j} A_z e^{i(\mu_z + 2\pi Q_z n)} + c.c.$ $n \equiv \text{turn number}$ $A_z = |A_z| e^{i\delta_z} \equiv \text{constant of motion}$

Beta functions at BPM locations $\beta_{z}^{j} = \frac{\left|Z_{j}(Q_{z})\right|^{2}}{\left|A_{z}\right|^{2}} \qquad \mu_{z}^{j} = \arg(Z_{j}) - \delta_{z}$ $Z_{j}(Q_{z}) \equiv Fourier \text{ component of } z_{j}$ $\left|A_{z}\right| = \sqrt{\beta_{z}^{k}} \theta_{k} \qquad \theta_{k} \equiv \text{kick}$ $\delta_{z} = -\mu_{z}^{k} + (2n+1)\frac{\pi}{2}$

- A CLIC/CTF main linac BPM has been analyzed
 - Resolution potential: <50 nsec, <50 nm</p>
 - CTF3 prototype dimensions and construction frozen.
 - Further modifications are under discussion, e.g. higher Q_{ℓ} , magnetic WG-coax transition
- An ILC cavity BPM prototype has been manufactured
 - RF measurements and tuning is underway
- A standard for analog / digital BPM read-out electronics has been established
 - Integrated automatic gain correction / calibration
 - Highly configurable to circular and linear machines, and different types of BPM detectors.