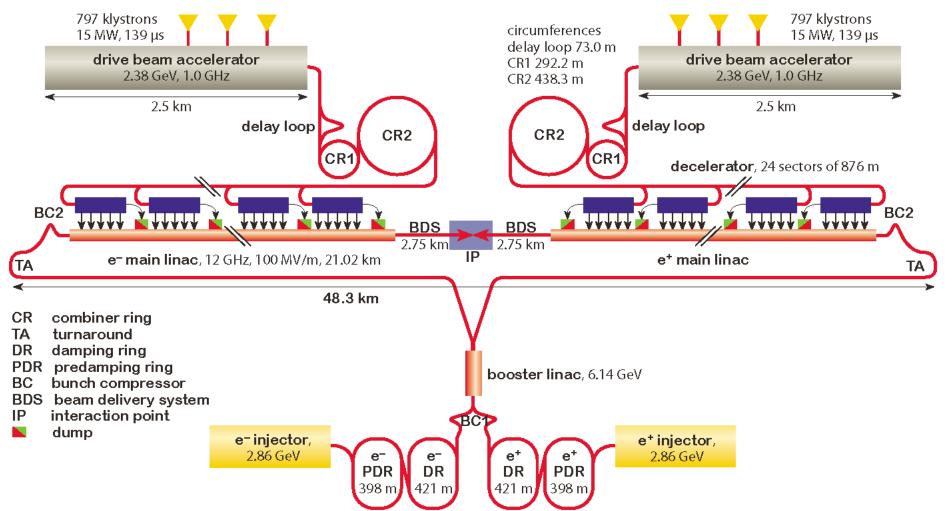


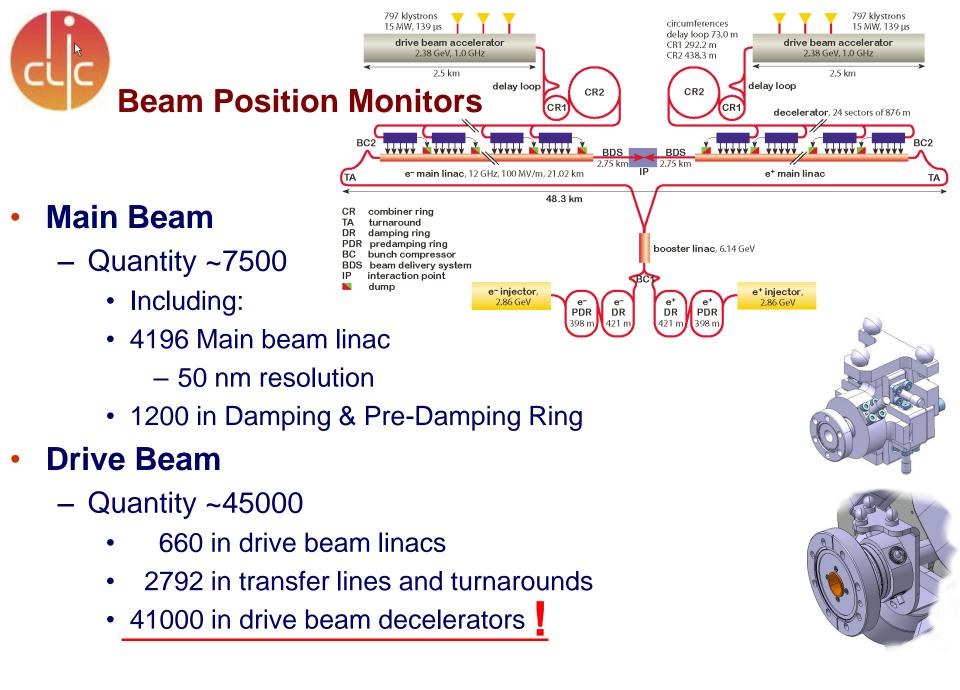
CLIC Drive Beam Beam Position Monitors


International Workshop on Linear Colliders 2010

Geneva

Steve Smith SLAC / CERN 20.10.2010

CLIC Accelerator Complex


- RF (klystron) power goes into drive beam efficiently:
 high current, long pulse, low energy, 500 MHz
- Compress drive beam to high current, high frequency
- Transfer energy to main beam

CLIC Acceleration Scheme

- Drive beam linac:
 - high current (4 Amp),
 - long pulse (140 µs),
 - low energy (2.38 GeV)
 - modest RF frequency (500 MHz)
- Compress train length in Delay Loop, Combiner Rings
 - multiply bunch frequency by 24
 - From 500 MHz to 12 GHz
- Split each drive beam into 24 sub-trains
 - 240 ns each
- Decelerate drive beam / accelerate main beam
 - 24 decelerators segments per main beam linac
 - 800 m each
 - 12 GHz
 - 100 Amp
 - 90% energy extraction

CLIC Drive Beam Decelerator BPMs

- Requirements
 - Transverse resolution < 2 microns
 - Temporal resolution < 10 ns
 - Bandwidth > 20 MHz
 - Accuracy < 20 microns</p>
 - Wakefields must be low
- Consider Pickups:
 - Resonant cavities
 - Striplines
 - Buttons

Drive Beam Decelerator BPM Challenges

- Bunch frequency in beam: 12 GHz
 - Lowest frequency intentionally in beam spectrum
 - It is above waveguide propagation cutoff
 - TE₁₁ ~ 7.6 GHz for 23 mm aperture
 - There may be **non-local** beam signals above waveguide cutoff.
- 130 MW @ 12 GHz Intentionally propagating in nearby Power Extraction Structures (PETS)
- Consider resonant BPM operating at 12 GHz:
 - Plenty of signal
 - But sensitive to waveguide mode propagating in beampipe
 - Would need to kill tails of 12 GHz modes very cleanly

Operating Frequency

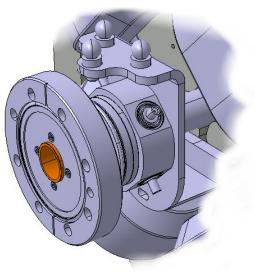
- Study operation at sub-harmonic of bunch spacing
 - Example: $F_{BPM} = 2 GHz$
 - Signal is sufficient
 - Especially at harmonics of drive beam linac RF
 - Could use
 - buttons
 - compact striplines
 - But there exist confounding signals
- Baseband
 - Bandwidth ~ 4 40 MHz
 - traditional
 - resolution is adequate
 - Check temporal resolution
 - Requires striplines to get adequate S/N at low frequencies (< 10 MHz)

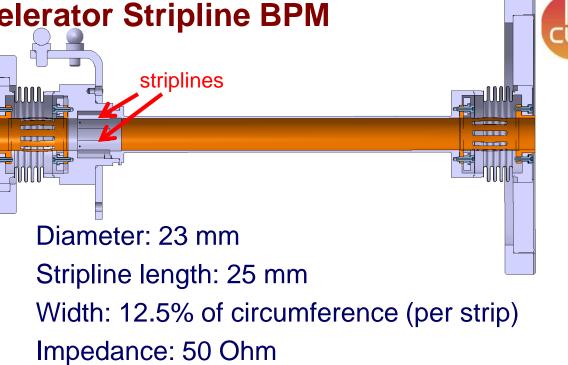
Generic Stripline BPM

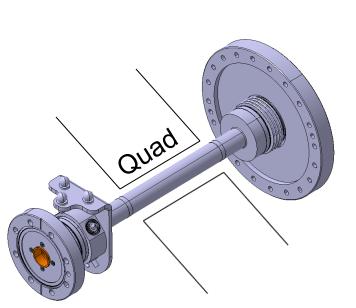
- Algorithm:
 - Measure amplitudes on 4 strips

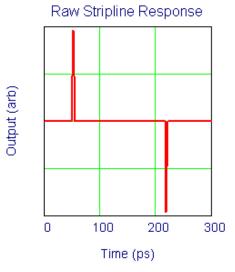
$$Y = \frac{R}{2} \cdot \frac{V_U - V_D}{V_U + V_D}$$

Resolution:

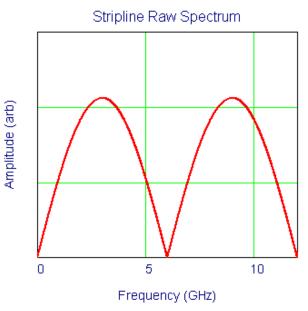

$$\frac{\sigma_{V}}{V} = 2\sqrt{2} \cdot \frac{\sigma_{y}}{R}$$


Given: R = 11.5 mm and $\sigma_y < 2 \ \mu m$


Requires $\sigma_V/V_{peak} = 1/6000$ \rightarrow 12 effective bits


- Small difference in big numbers
- Calibration is crucial!

Decelerator Stripline BPM

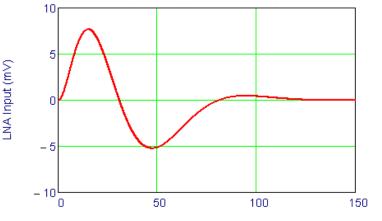


Response Peak at 3.0 GHz, null at 12 GHz

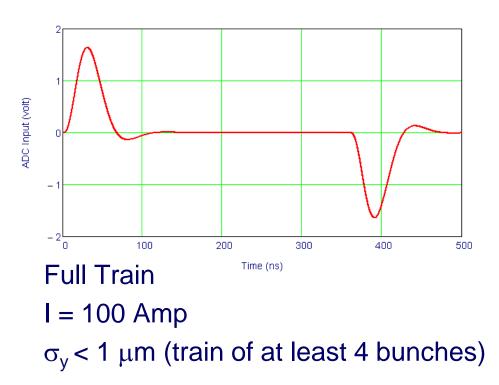
Signal Processing Scheme

dic

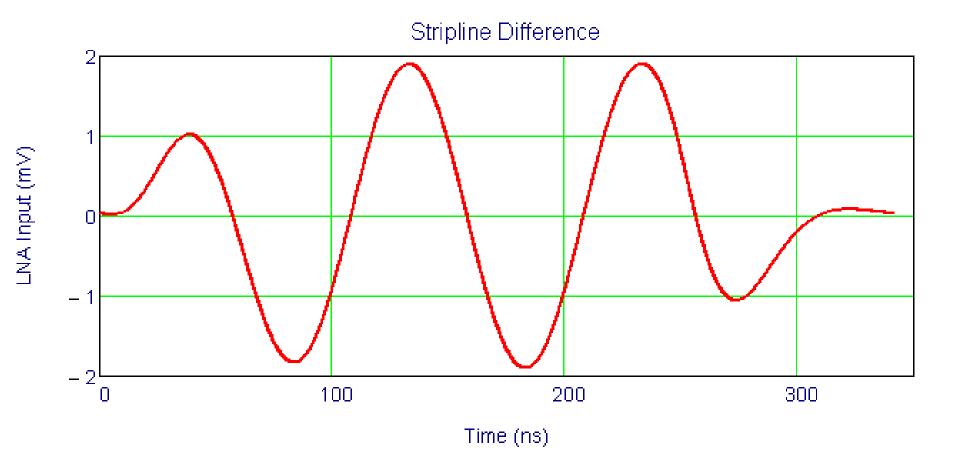
- Lowpass filter to ~ 20 MHz
- Digitize with fast ADC
 - 160 Msample/sec
- 16 bits, 12 effective
- Assume noise figure ≤10 dB


For nominal single bunch charge 8.3 nC – Single bunch resolution $\sigma_v < 1 \ \mu m$

Including Drive Beam BPM Processor Uplink Input 1 Cable & filter losses Up amplifier noise figure ADC Input 2 ADC noise Right ADC Input 3 Down ADC Cal Amp Cal +30 dBm Switch Series switches for Isolation> 80dB Cal Pulse Cal Synth Input 4 1-30 MHz Left ADC Digitzer Prog. Atten Low Pass Low Pass Low Clock IL < 3 dBBW = 40 MHz Noise 160 MHz BW = 15MHz Amp **IWLC 2010** Locked


Single Bunch and Train Transient Repsonse

- What about the turn-on / turn-off transients of the nominal fill pattern?
- Provides good position measurement for head/tail of train
 - Example: NLCTA
 - ~100 ns X-band pulse
 - BPM measured head & tail position with 5 50 MHz bandwidth
- CLIC Decelerator BPM:


- Time (ns)
- Single Bunch
- Q=8.3 nC
- σ_y ~ 2 μm

Temporal Response within Train

- Transverse oscillation at 10 MHz with 2 micron amplitude
- Stripline difference signal Up-Down:
- S/N_{thermal} huge but ADC noise limit: ~ 2 μ m/ $\sqrt{N_{sample}}$

Where do Position Signals Originate?

- Convolute pickup source term
 - for up/down electrodes
 - to first order in position y
- With stripline response function
 - where Z is impedance and
 - -l is the length of strip
- At low frequency < $c/2L \sim 6GHz$ - Looks like $V_{+}(t) = \frac{Z}{2} \cdot \frac{\phi}{2L} \cdot \frac{2L}{L} \frac{d}{L} \left(Q(t) \left(1 \pm \frac{2y(t)}{L} \right) \right)$

Up-Down Difference:

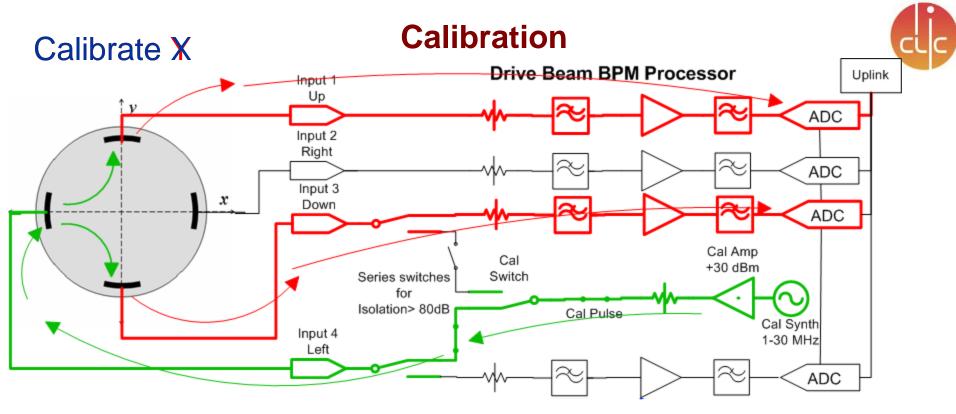
$$q_{\pm}(t) = I(t) \cdot \left(1 \pm \frac{2y(t)}{R}\right)$$

$$R(t) = \frac{Z}{2} \cdot \frac{\phi}{2\pi} \cdot \left(\delta(t) - \delta(t - \frac{2L}{c})\right)$$

$$V_{\pm}(t) = \frac{1}{2} \cdot \frac{1}{2\pi} \cdot \frac{1}{c} \frac{1}{dt} \left(\frac{Q(t)}{1 \pm \frac{1}{R}} \right)$$

$$V_{\pm}(t) - V_{\pm} = \frac{Z}{2} \frac{\phi}{2\pi} \frac{2L}{c} \frac{2}{R} \left(y(t) \frac{dQ(t)}{dt} + Q(t) \frac{dy(t)}{dt} \right)$$

- In middle of train we measure position via Q*d/dt(y) signal
 - Difference signal starts/ends in phase w/ position
 - but is in quadrature away from initial/final transient
- In order to reconstruct position vs. time along train
 - must measure response function with single/few bunches

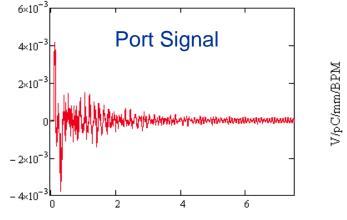


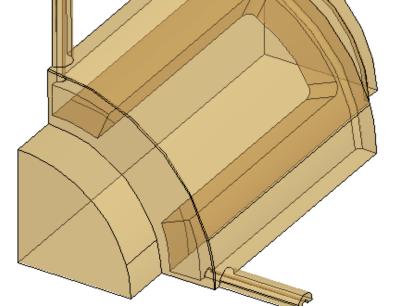
Summary of Performance

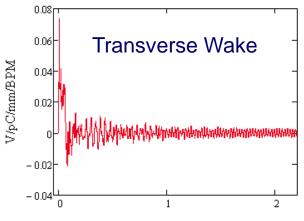
clc

- Single Bunch
 - For nominal bunch charge Q=8.3 nC
 - $\sigma_y \sim 2 \ \mu m$
- Train-end transients
 - For current I = 100 Amp
 - σ_y < 1 μ m (train of at least 4 bunches)
 - For full 240 ns train length
 - current I > 1 Amp
 - σ_y < 1 μm
- Within train
 - For nominal beam current ~ 100 A

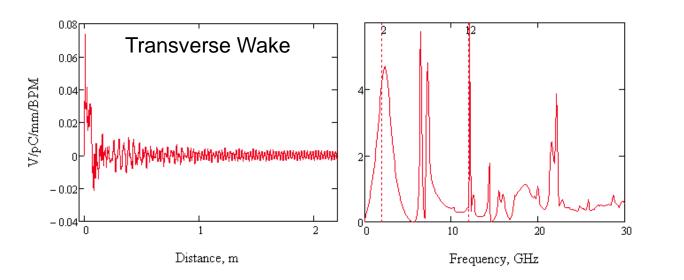
 σ_y ~ 2 μm for $~\delta t$ > 20 ns




- Transmit calibration from one strip
 - Measure ratio of couplings on adjacent striplines
- Repeat on other axis
- Gain ratio → BPM Offset
- Repeat between accelerator pulses
 - Transparent to operations
- Very successful at LCLS


Finite-Element Calculation

- Characterize beam-BPM interaction
- GDFIDL
 - Thanks to Igor Syratchev
 - Geometry from BPM design files
- Goals:
 - Check calculations where we have analytic approximations
 - Signal
 - Wakes
 - Look for
 - trapped modes
 - Mode purity

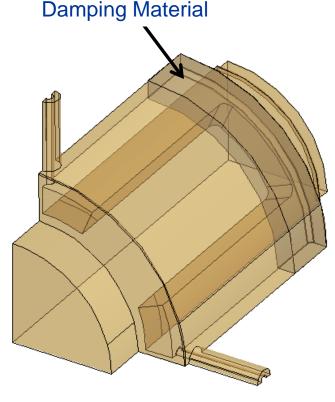


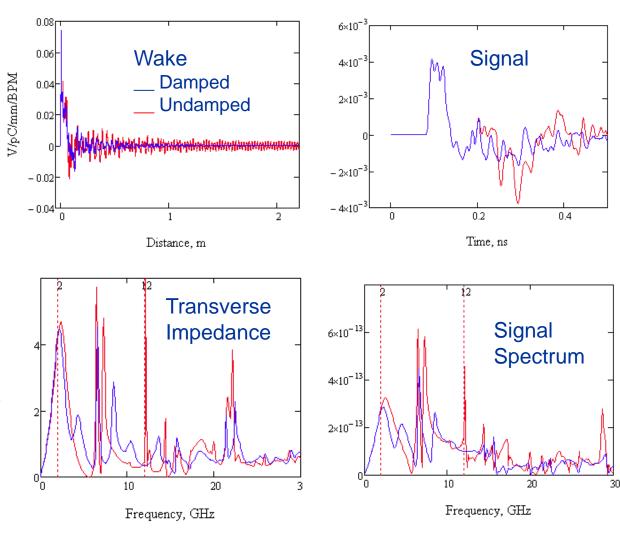
IWLC 2010

Time, ns

Distance, m

Transverse Wake




- Find unpleasant trapped mode near 12 GHz (!)
- Add damping material around shorted end of stripline
 - Results:
 - Mode damped
 - Response essentially unchanged at signal frequency

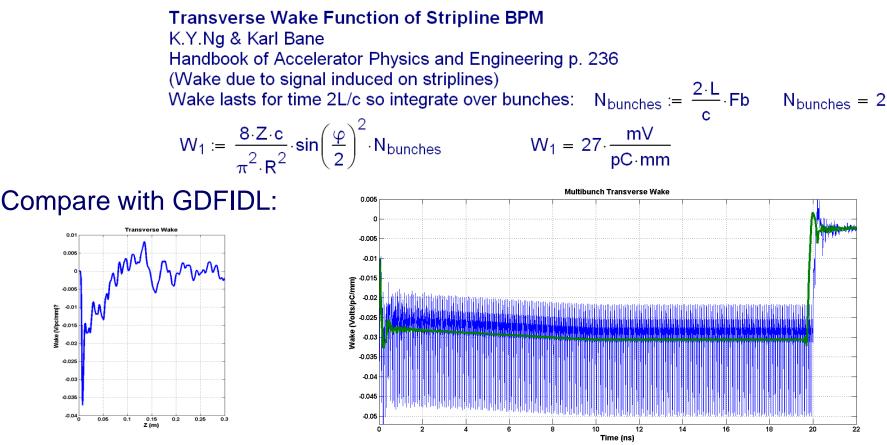
Damped Stripline BPM

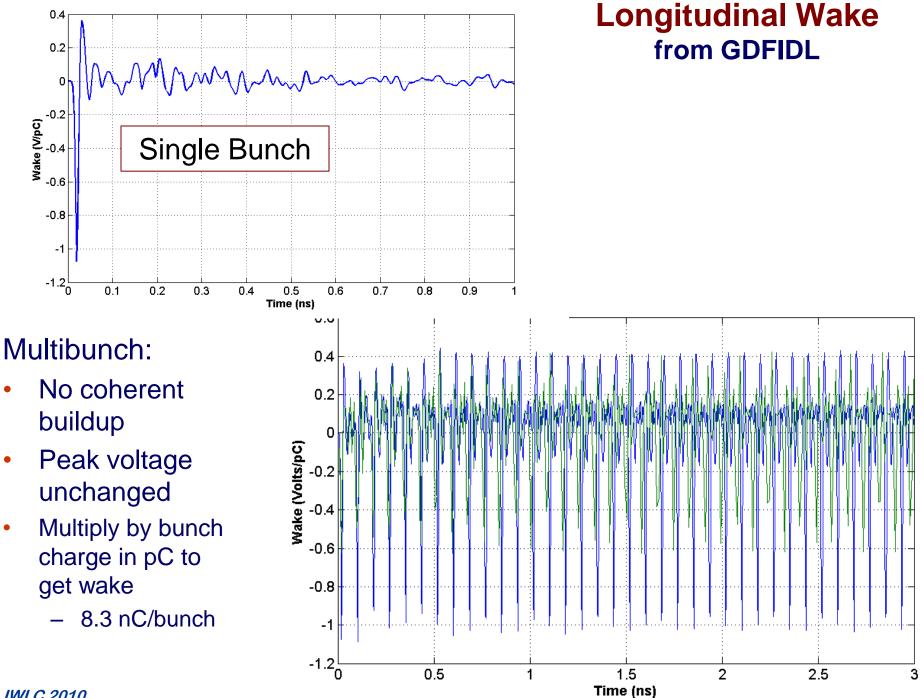
- Few mm thick ring of SiC
- Transverse mode fixed
- Signal not affected materially
 - Slight frequency shift

Comparison to GDFIDL

clc

- Compare to analytical calculation of "perfect stripline"
- Find resonant frequencies don't match
 - GDFIDL ~ 2.3 GHz
 - Analytic model is 3 GHz
 - Is this due to dielectric loading due to absorber material?
- Amplitudes in 100 MHz around 2 GHZ differ by only ~5% (!)
- Energy integrated over 1 bunch:
 - 0.16 fJ GDFIDL
 - 0.15 fJ Mathcad
- Must be some luck here
 - filter functions are different
 - resonance frequencies don't match
 - Effects of dielectric loading partially cancels
 - Lowers frequency of peak response → raises signal below peak
 - Reduces Z → decreases signal


Sensitivity


- Ratio of Dipole to Monopole
 - $\Delta \Sigma$ ratio
- GDFIDL calculation
 - Signal in 100 MHz bandwidth around 2 GHz
 - Monopole 1.75 mV/pC
 - Dipole 0.25 mV/pC
 - Ratio 0.147/mm
- Theory
 - $y = R/2^* \Delta/\Sigma$
 - → Ratio of dipole/monople = 2/R = 0.148/mm for R =13.5 mm
 - (R of center of stripline, it's not clear exactly which R to use here)
- Excellent agreement for transverse scale

Multibunch Transverse Wake

Calculate transverse wakefield:

- GDFIDL shows quasi-DC Component: 30.6 mV/pC/mm/BPM
 - Calculate 27 mV/pC/mm/BPM for ideal stripline
 - Excellent agreement
- Components at 12 GHz, 24 GHz, 36 GHz:
- Comparable to features of PETS

IWLC 2010

•

Summary of Comparison to GDFIDL

- GDFIDL and analytic calculation agree very well on characteristics
 - Signals at ports:
 - Monopole
 - Dipole
 - Transverse Wake
 - Disagree on response null at signal port
 - May need lowpass filter to reduce 12 GHz before cables
- Signal Characteristics Good
- Longitudinal & transverse wakes Good

Summary

- A conventional stripline BPM should satisfy requirements
 - Processing basband (0 40 MHz) stripline signals
 - Signals are local
 - Calculation agrees with simulation:
 - Wakefields
 - Trapped modes
- Can achieve required resolution
- Calibrate carefully
 - Online
 - transparently
- Should have accuracy of typical BPM of this diameter
- Pay attention to source of BPM signal
 - Need to unfold position signal y(t)
 - Occasionally measure response functions
 - with single/few bunch beam