

Progress on Instrumentation

- Preparation of the Conceptual Design Report
- Today CLIC instrumentation
 - Baseline solutions
 - Alternative scenario(s)
- Perspectives & Conclusions

- R&D on Critical issues: known since long time already: Are they Feasible now ? 50nm precision BPM – 20fs precision bunch length monitor – 1um transverse profile monitor
- Collect requirements: Overview on the CLIC needs Make sure that there is not something big unknown !
- Defined Baseline CLIC instrumentation with appropriate technology choice
- Propose and study Alternative solutions which would impact either on cost or performance
- Look for standardization and technological developments for cost reduction and/or an improved reliability and maintenance

<u>Relatively small group at CERN relying a lot on external collaborations</u> <u>!!</u>

1- First iteration on requirements from Beam Dynamic – first iteration in 2008 - Full set of specifications: More than 200kms of beamlines requiring > 50 000 instruments

- 1- First iteration on requirements from beam dynamic first iteration in 2008 - Full set of specifications: More than 200kms of beam lines requiring > 50 000 instruments
- 'From BD simulations to hardware specifications'
 - Time resolution seen as sampling rate or true analog bandwidth
 - Accuracy / Resolution-Stability
 - Full profile or R.M.S value is enough

IWLC

2- Open discussion with experts to define a road map for feasibility demonstration and define baseline scenario

Beam Instrumentation workshop in June 2009 – 2days and ~50 participants

Mandate of the CLIC Beam Instrumentation Workshop 2 & 3 June 2009

1- Discuss the beam instrumentation requirements for each CLIC subsystems and identify Critical Items and the need for new R&D

2- Evaluate the performance of already-existing technologies

CLIC specific instruments

-Luminosity monitors

CTF3 beam diagnostics – importable to CLIC

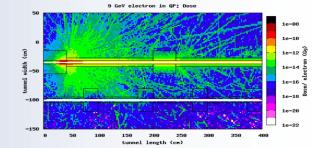
- ILC instruments with similar requirements as for CLIC

- Laser Wire Scanner or Cavity BPM
- Beam Delivery System instrumentation
 - Ex: Polarization monitor, Beam Energy measurements
- Damping ring instrumentation developed at ATF2
- 3rd and 4th generation light sources
 - Damping ring instrumentation
 - Bunch Compressor instrumentation very similar to XFEL project

3- Follow-up on the change of beam parameters and take into account additional requests from Machine protection system and Beam commissioning strategy

Specifications on Beam Loss monitors:Beam Dynamics – max tolerated:10-3 of total intensity over 20 km on the MB10-3 of total intensity over each 875m on the DB

<u>Radiation To Electronics</u> - Losses required that annual '1 MeV neutron equivalent fluence' and fluences of hadrons with energy >20 MeV, near beam line is less than 10¹⁰ and 10⁹ cm⁻² respectively. From simulation, this corresponds to:


10⁻⁵ of total intensity over 20 km on the MB

10⁻⁵ of total intensity over each 875 m on the DB

Evaluate the performances of the instruments with reduced beam charge or larger emittance for beam commissioning

Talk on 'Status of CLIC operation and Machine Protection'

by Michel Jonker at 17h20 in Room22 – Floor 0

- 1- First iteration on requirements from beam dynamic first iteration in 2008 -Full set of specifications: More than 200kms of beam lines requiring > 50 000 instruments
- Speaking the same language ! 'From simulations to hardware development'
- 2- Open discussion with experts to define a road map for feasibility demonstration and define baseline scenario Beam Instrumentation workshop in June 2009 – 2days and ~50 participants
- 3- Keep tracks on changes and additional requests from working groups on Machine protection system and the Beam commissioning strategy
- Specifications on Beam Loss monitors,
- Evaluate the performances of the instruments with reduced beam charge or larger emittance for beam commissioning

4- Write the CDR ... Today !

~ 20 Contributors for beam instrumentation chapter

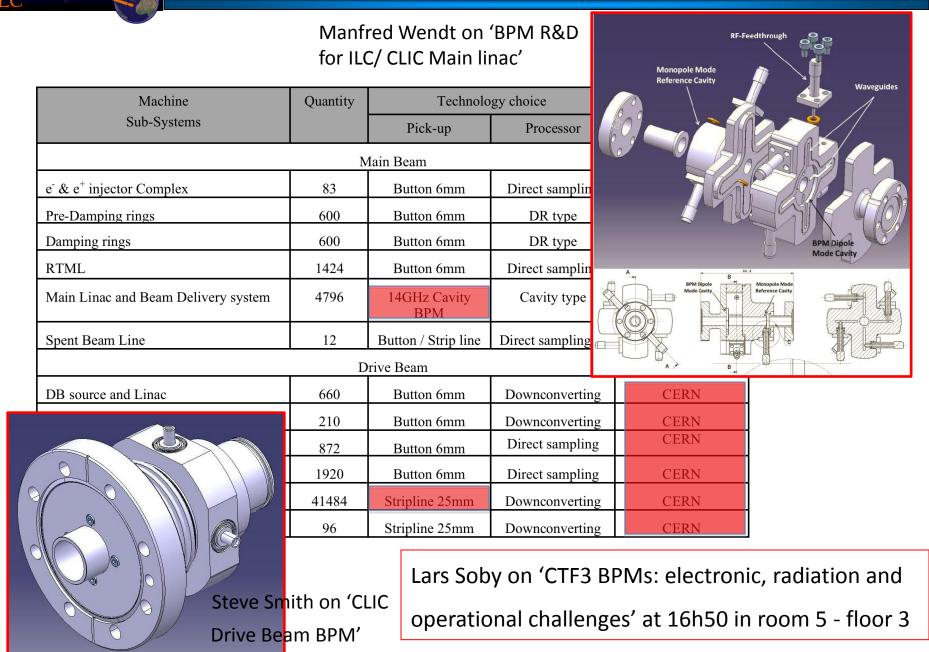
and ~80-100 pages

What's in the CDR

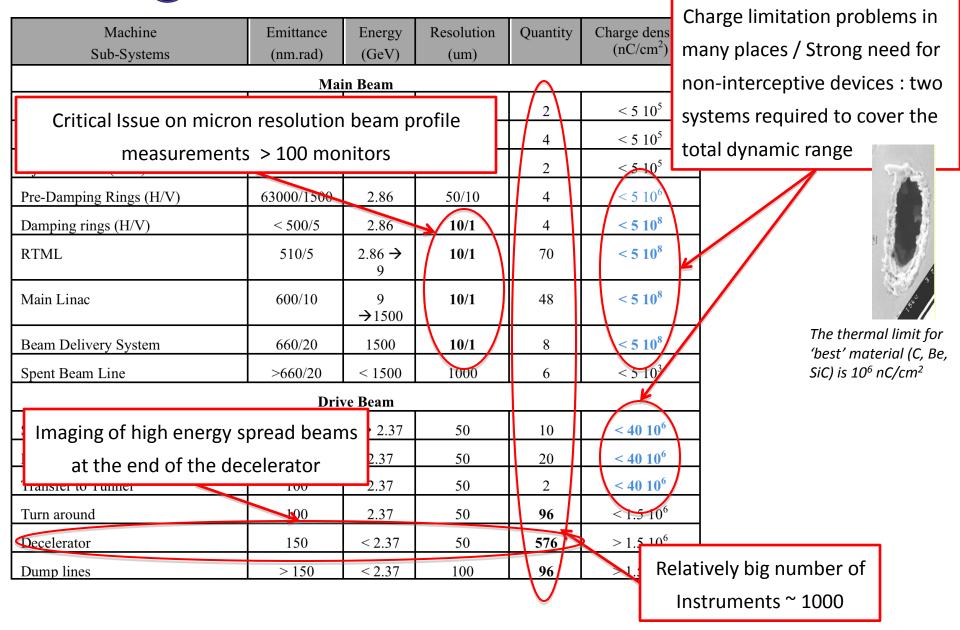
Review the CLIC Beam instrumentation

by Instrument type

Explain the requirements
Describe the baseline choice
Discuss alternative scenario(s)



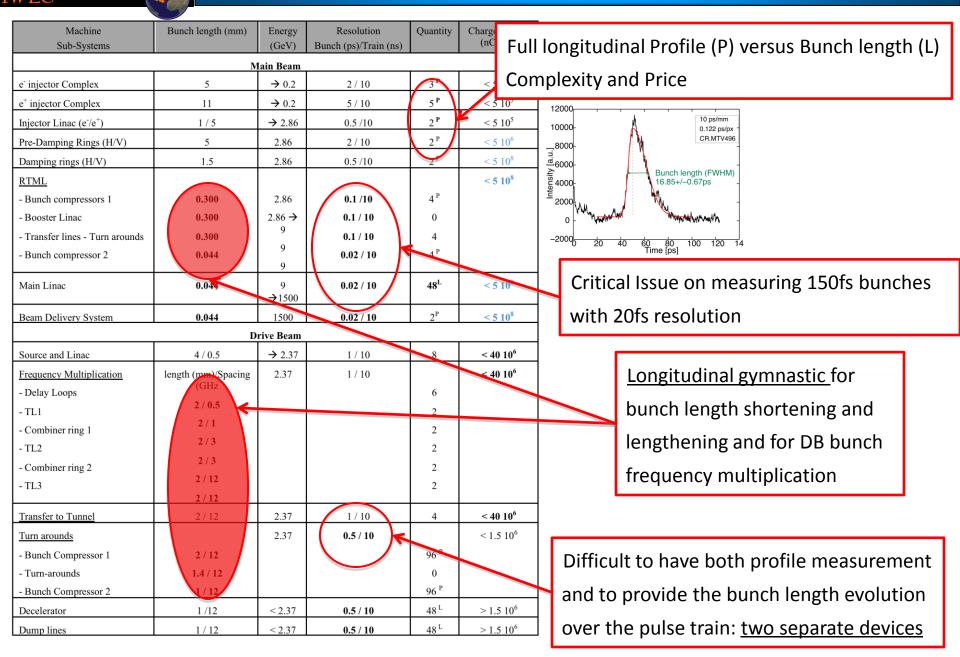
Machine Sub-Systems	Intensity (A)	Train duration (ns) / Bunch frequency (GHz)	Accuracy / Resolution (um)	Time Resolution (ns)	Quantity	Beam aperture (mm)
		Main Bear	n			<u> </u>
e ⁻ & e ⁺ injector Complex	0.5	156 / 1	100 / 50	10	83	40
Pre-Damping Rings	0.5	156 / 1	tbd./ 20	10	600	20 / 9
				Turn by turn		
Damp High accuracy	(5um) res	olution (50nm) BPI	M in Main Lin	ac and BDS	00	20 / 9
RTML	1	156 / 2	100 / 10	10	1424	various
Main Linac	1	156 / 2	5 / 0.05	10	4196	>
Beam Delivery System	1	156 / 2	5 / 0.05	10	600	
Spent Beam Line	1	156 / 2	tbd / 1000	100	12	various
Various range of t	beam pipe	e diameters from	4mm to 200	mm		- -
all over the compl	ex (to mir	nimize resistive w	akefield effe	cts)	660	40
Complex		0.5 → 12			210	80
Transfer to Tunnel	100	24 x 240ns / 12	40 / 10	10	872	200
Turn around	100	240ns / 12	40 / 10	10	1920	40
Decelerator	100	240ns / 12	20 / 2	10	41484	26
Dump lines	100	240ns / 12	20/2	10	96	40
Very high numbers of BPMs for the DB decelerator						V


Beam Position Monitors

Transverse Profile Monitors

CERN

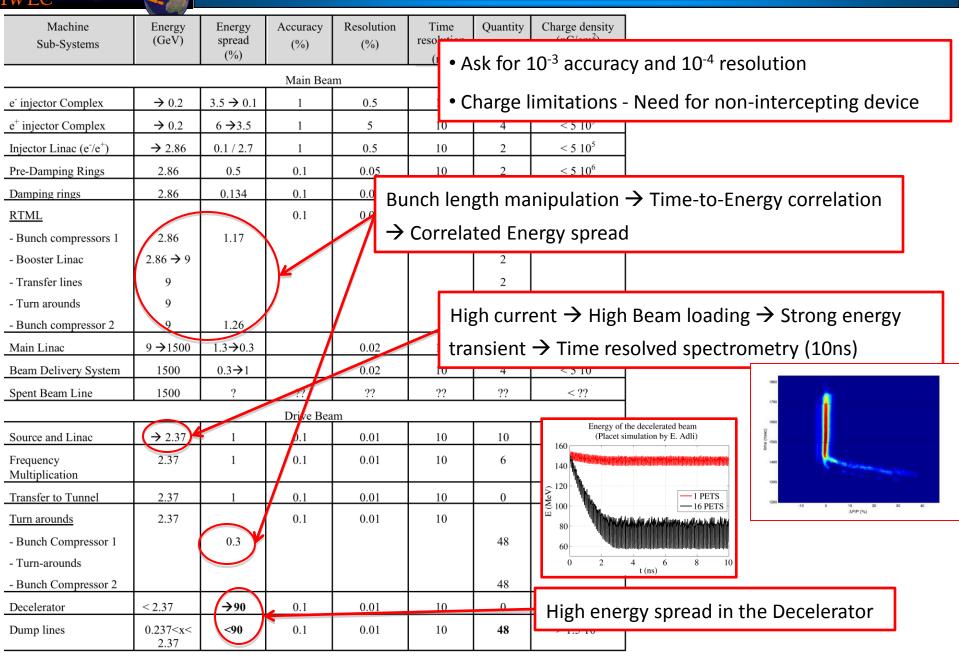
R&D on Laser Wire Scanners discussed in 'Instrumentation progress at ATF2' by Toshiaki Tauchi at 11h00 High resolution imaging using X-ray SR or LWS for Damping rings developed @ ATF2 and 3rd generation light sources


Machine	Quantity	Techr	ology choice	Place to be Tested		
Sub-Systems		Baseline	Alternatives			
Main Beam						
e ⁻ & e ⁺ injector Complex	10		OTR	CERN		
Pre-Damping and Damping rings	8	XSR	LWS / OSR-PSF	Sync light sources PSI, PETRA,		
RTML	70	OTR LWS	OTR/OSR PSF	ATF2 CESR-TA		
Main Linac and Beam Delivery system	56	OTR LWS	OTR-PSF XDR	ATF2 CESR-TA		
Spent Beam Line	6	OTK	Scintillating screens	CERN		
	Dr	ive Beam				
DB source and Linac	10	OTR / LWS	ODR	FEL's		
Frequency multiplication complex	20	OSR	XSR	Sync light sources PSI, PETRA,		
Transfer to tunnel	2	OTR / LWS	ODR	FEL's		
Turn-arounds	96	OSR	XXR	Sync light sources PSI, PETRA,		
Decelerator and Dump lines	672		OTR	CERN		

LWS expensive → High resolution OTR & XUV Diffraction Radiation as alternative solutions to be investigated Talk on proposed R&D program for DR @ CESR-TA

Laser technology development by Laura Corner on 'Fibre Laser for advanced beam diagnostics' at 11h20

Longitudinal Profile Monitors


Machine Sub-Systems	Quantity Main Bean	Technology choice	Place to be Tested	Collaboration with U. Dundee and Daresbury on Electro-Optical techniques for CLIC-type high
e ⁻ & e ⁺ injector Complex	10	Streak / RF pick-up	CTF3	resolution profile measurement
Pre-Damping and Damping rings	4	Streak / RF pick-up	CTF3	
RTML	12	EOS	XFEL's	fixed delay
Main Linac and Beam Delivery system	50	CDR	XFEL's	fs laser
	Drive Bear	n		
DB source and Linac	8	Streak / RF pick-up	CTF3	
Frequency multiplication complex	16	Streak / RF pick-up	CTF3	Talk by Konstantin Lekomtsev on
Transfer to tunnel	4	RF pick-up	CTF3	'Longitudinal beam profiling with
Turn-arounds	192	Streak / RF pick-up	CTF3	coherent diffraction radiation' at
Decelerator and Dump lines	96	RF pick-up	CTF3	17h10 in room 5 floor 3
		•		

Instrumentation covered by using profile monitors (Streak and EO techniques) and cheaper bunch length measurement devices (RF pick-up and CDR monitor)

More details by Anne Dabrowski 'Longitudinal Diagnostic for CLIC' at 11h40

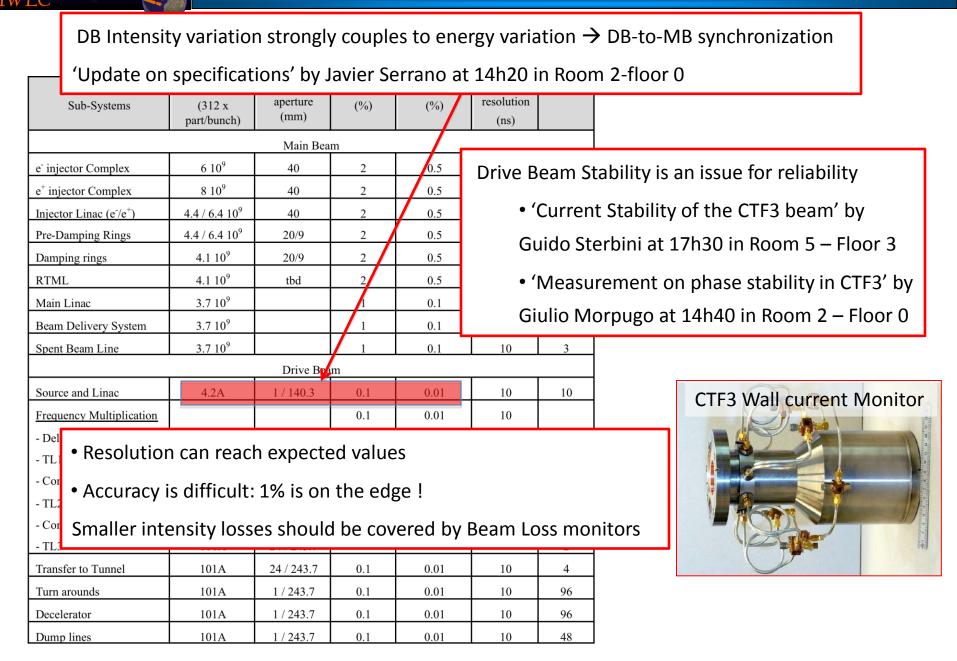
Beam Energy monitoring

Using a bending magnet to create a dispersive

	region			
Machine	Quantity	Technology choice	Place to be Tested	
Sub-Systems				Final measurement in the BDS, see the Talk
	Main Bean	n		
e ⁻ & e ⁺ injector Complex	8	BPM / OTR	CERN	by Rogelio Tomas on 'Specifications of
Pre-Damping and Damping rings	2	BPM / XSR	Sync light sources	technical equipment for the BDS' at 12h00
RTML	12	BPM / XSR	FEL's	
Main Linac and Beam Delivery system	52	BPM	ATF2	First Collimation Dipole as Spectrometer
	Drive Bear	n		0.1 म
DB source and Linac	10	BPM / OTR / Cherenkov	CERN	BL=0.125 Tm Δ(BL)/BL≈10 ⁻⁴ 5 (^μ 1) ⁽⁰ =0) Δ(BL)/BL≈10 ⁻⁴ 5
Frequency multiplication complex	6	BPM / OTR / OSR	CERN	$\alpha = 2.5 \times 10^{-5} \text{ rad}$
Turn-around	96	BPM / OTR / OSR	CERN	Bρ=5000 Tm
Decelerator and Dump lines	48	BPM / OTR / Cherenkov	CERN	♦

 $\Delta E/E = \Delta \alpha / \alpha \oplus \Delta (BL)/BL \approx 3.6 \times 10^{-4}$

•Dedicated measurement lines – often combined with an intermediate beam dump (Magnetic chicane)


•Measure Energy with high resolution BPM and Energy spread with time resolved beam size monitors

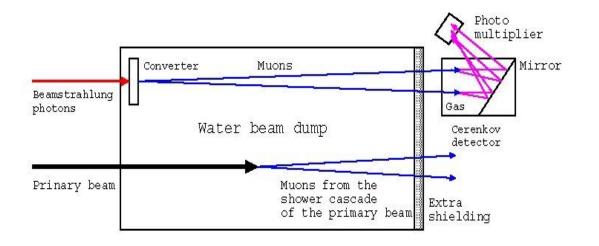
- Talk by Anne Dabrowski on 'CTF3 Instrumentation, opportunities and limitations' at 16h10 in Room 5 Floor 3

- Profiler based on monitor insensitive to beam energy variations

- Segmented dump on CTF3 – Segmented Cherenkov monitor for CLIC to be developed and tested on CTF3

Machine Sub-Systems	Dynamic Range	Sensitivity (Gy/pulse)	Response time (ms)	Quantity	Additional requirements	
Main Beam						
e ⁻ and e ⁺ injector complex	10 ⁻⁴	10 ⁻⁶	1	2500		
Pre-Damping and Damping Rings	10 ⁻⁴	10 ⁻⁶	1	1200	Insensitive to Synch. Rad.	
RTML	10 ⁻⁴	10-6	1	1500		
Main Linac	10-7	5. 10 ⁻⁸	1	4196	Distinguish losses from DB	
Beam Delivery System	10 ⁻⁴	10-6	1	700		
Spent Beam Line	tbd	tbd	1	tbd		
	D	rive Beam				
Injector complex	5. 10 ⁻⁴	5. 10 ⁻⁶	1	4000		
Decelerator	5. 10 ⁻⁶	5. 10 ⁻⁸		41484	Distinguish losses from MB	
Dump lines	tbd	tbd		tbd		

Possibly Cerenkov radiator with PMT


- Two beam modules: 1 BLM per Quadrupoles
 - 41484 Quadrupoles in DB
 - 4020 Quadrupoles in MB
- Cheaper option using Cerenkov Fibers (DESY)

High quality Cerenkov quartz fibers can withstand up to 300MGy ; system on development on CTF3

IWLC

EUROTeV-Report-2008-xxx-1

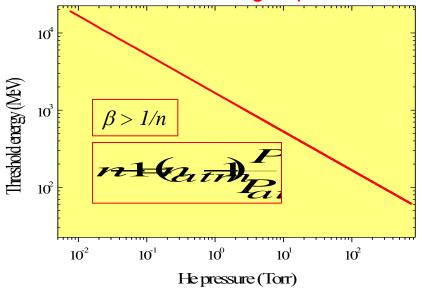
- Luminosity Monitors based on the measurements of very high energy beamstrahlung photons from IP
- Photons → High energy muons and detected downstream the Water dump *The design of the 'Spent beam line' presented in details by Edda Gschwendtner in WG5 at 14h00*

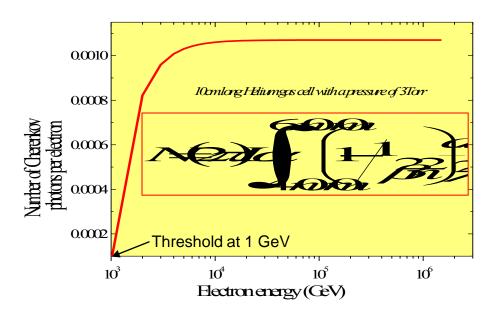
- More Results on Technical developments in the coming talks
- With a Huge amount of devices (beyond what was already achieved in our field),
- the TDR phase would have to address many remaining issues
 - Prototyping of every single instruments
 - Integration in the Machine layout
 - Design, construction and validation of each instrument
 - Cost optimization
 - Simplicity if applicable (not always compatible with tight tolerances)
 - Standardization is a key concept
 - Gain in Mass production ?
 - Dependability analysis needs to be performed

Reliability, Availability, Maintainability and Safety

Thanks for your attention

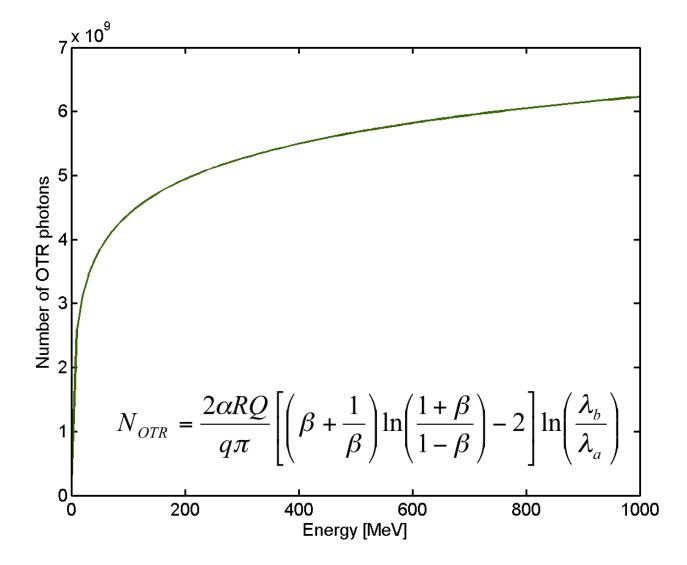
Beam Energy monitoring





<u>Threshold Cherenkov detector</u> : $\beta > 1/n$

Cherenkov radiator (1atm)	Silica aerogel	Pentane C ₅ H ₁₂	Ethane C ₂ H ₆	Argon Ar	Neon Ne	Helium He
Index of refraction (n-1)	8.4 10 ⁻³	1.7 10 ⁻³	7.1 10 ⁻⁴	2.8 10 ⁻⁴	6.7 10 ⁻⁵	3.5 10 ⁻⁵
Cherenkov threshold (MeV)	3.5	8.2	13.1	20.9	43.5	60.4


Evolution with the gas pressure

Transverse Profile Monitors

CLIC vs ILC

	CLIC 3TeV	CLIC 500GeV	ILC
Center of mass energy (GeV)	3000	500	500
Main Linac RF Frequency (GHz)	12	12	1.3
<i>Luminosity (</i> 10 ³⁴ cm ⁻² s ⁻¹)	5.9	2.3	2
Linac repetition rate (Hz)	50	50 btf	5
Accelerating gradient (MV/m)	100	avs tight	33.5
Proposed site length (km)	are alw	13	31
Total power consumption (MW)	415	129.4	216
Wall plug to main beam in ments 10, (%)	6.8	7.5	9.4
Linac repetition rate (Hz) Accelerating gradient (MV/m) Proposed site length (km) Total power consumption (MW) Wall plug to main beam Requirements for (%)			

Critical Beam Parameter

	CLIC 3TeV	CLIC 500GeV	ILC
Bunch Length in the Linac (fs)	150	230	900
Typical Beam Size in the Linac (μ m)	1	1	5
Beam Emittance H/V (nm.rad)	660/20	2400/25	104/40

http://clic-study.web.cern.ch/CLIC-Study/

24 http://www.linearcollider.org/cms/ **CLIC vs Light Sources**

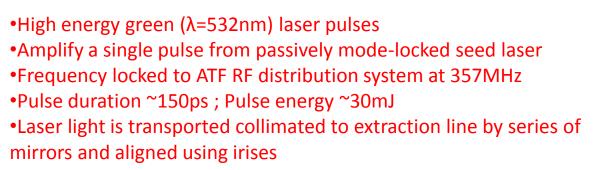
WLC

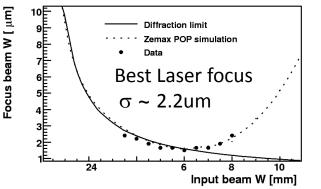
	CLIC DR	SLS	Diamond	Soleil
Beam Energy (GeV)	2.86	2.4	3	2.75
Ring Circonfrence (m)	493	288	561.6	354
Bunch charge (nC)	0.6	1	1	0.5
Energy Spread (%)	0.134	0.09	0.1	0.1
Damping times (x,y,E) (ms)	2,2,1	9,9,4.5	-	6.5,6.5,3.3
Orbit stability (um)	1	1	1	1

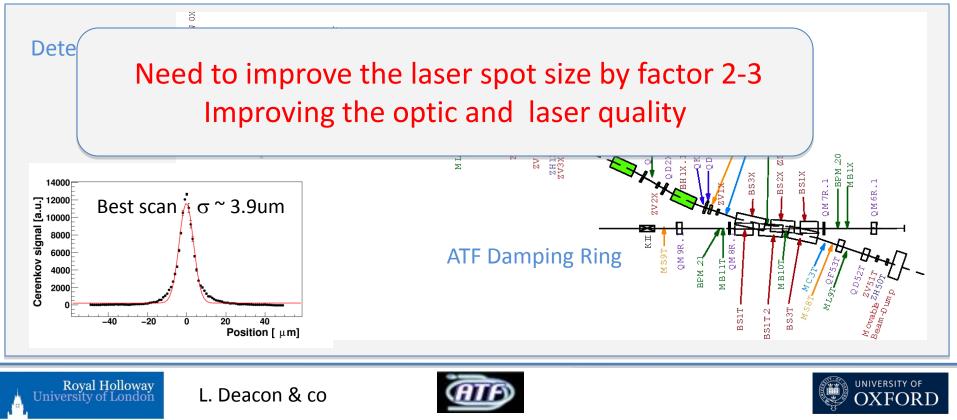
	CLIC linac	XFEL	LCLS
Beam Energy (GeV)	3000	20	15
Linac RF Frequency (GHz)	12	1.3	2.856
Bunch charge (nC)	0.6	1	1
Bunch Length (fs)	150	80	73

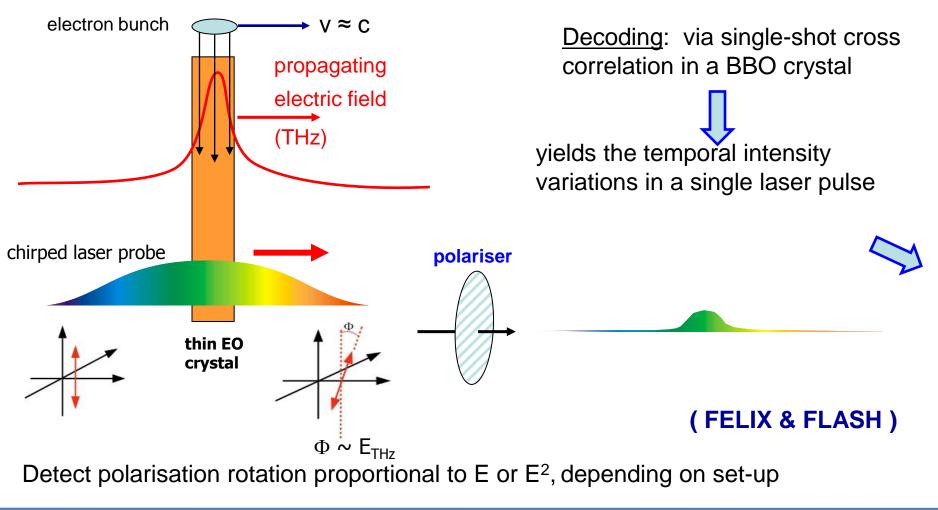
CLIC vs CTF3

	CTF3	CLIC
Beam Energy (GeV)	0.15	2.4
RF Frequency (GHz)	3	1
Multiplication Factor	8	24
Initial Beam Current (A)	3.75	4.2
Final Beam Current (A)	30	100
Initial Pulse length (us)	1.2	140
Final Pulse Length (ns)	140	240
Total Beam Energy (kJ)	0.7	1400
Repetition Rate (Hz)	5	50
Average Beam Power (MW)	0.0034	70
Charge density (nC/cm ²)	0.4 10 ⁶	2.3 10 ¹⁰

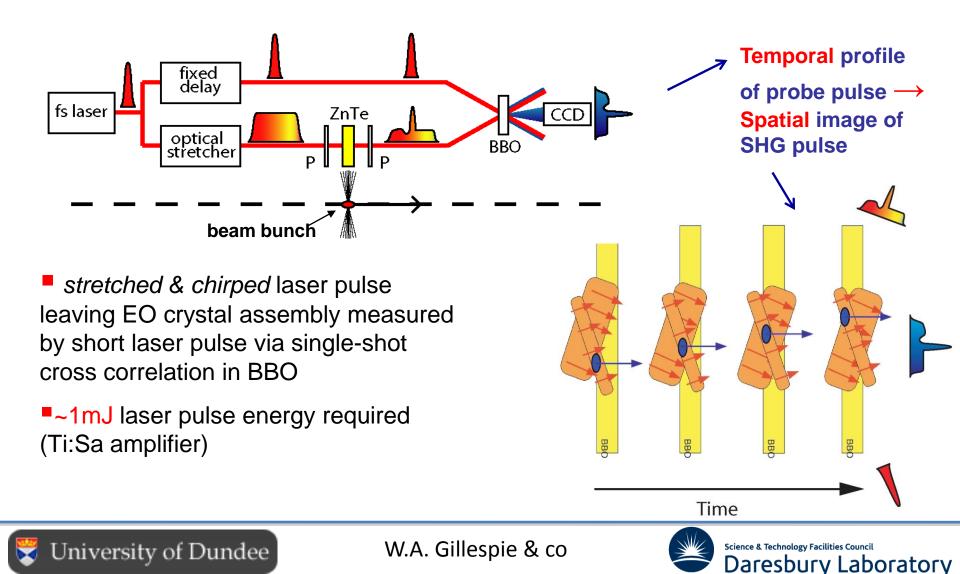

The thermal limit for 'best' material (C, Be, SiC) is 10⁶ nC/cm²


- Still considerable extrapolation to CLIC parameters
- Especially total beam power (loss management, machine protection)
- Development of non-destructive instruments
- Stability and reliability : CTF3 not designed to address these issues

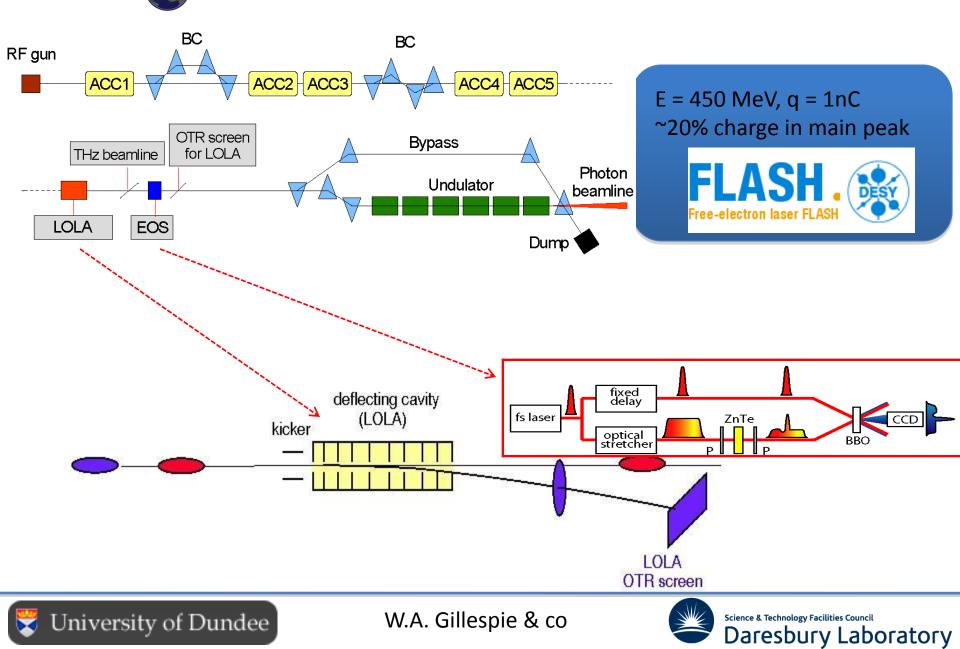

Micron resolution with Laser Wire Scanner


Optimized to measure 20umx1um beam spot size

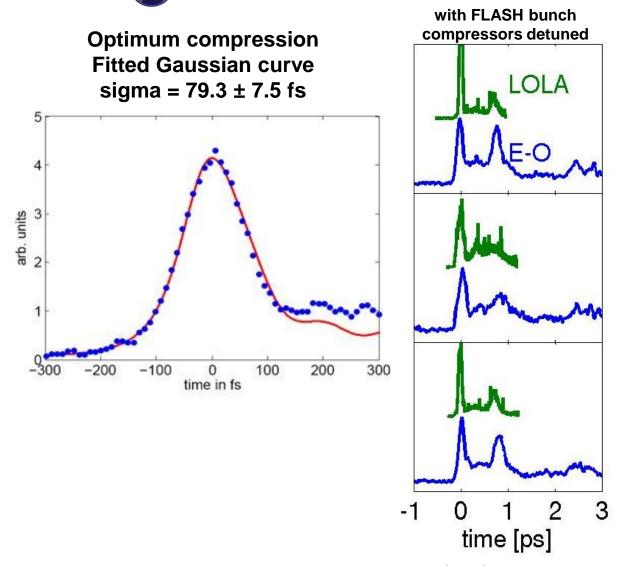
Principle: Convert Coulomb field of e-bunch into an optical intensity variation Encode Coulomb field on to an optical probe pulse - from Ti:Sa or fibre laser



W.A. Gillespie & co

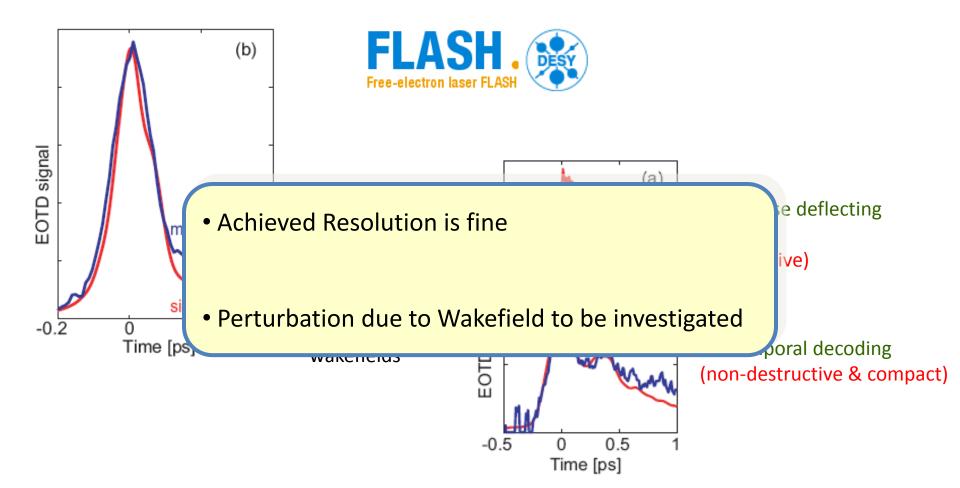


Single-shot Temporal Decoding (EOTD)


Benchmarking EO at FLASH against LOLA

Benchmarking EO at FLASH against LOLA

Physical Review Special Topics - Accelerators and Beams 12, 032802 (2009)

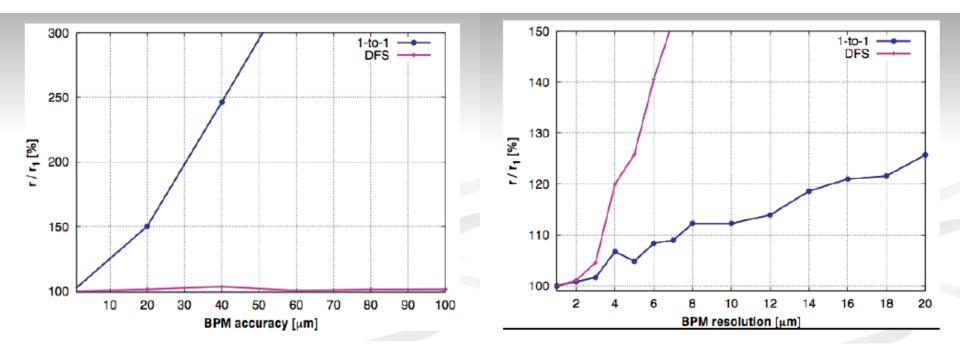

W.A. Gillespie & co

FLASH

Free-electron laser FLAS

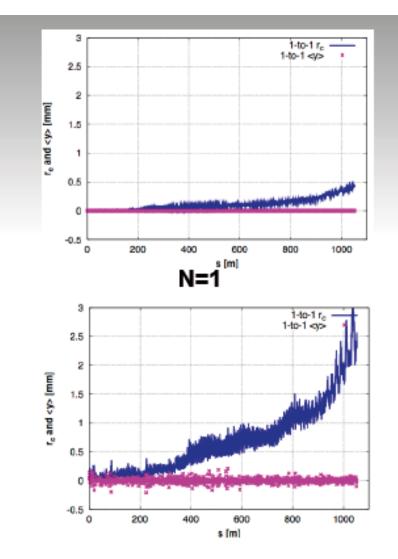
Physical Review Special Topics - Accelerators and Beams 12, 032802 (2009)

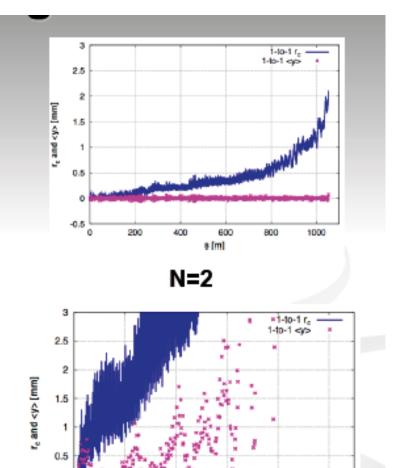
W.A. Gillespie & co


Science & Technology Facilities Council

Daresbury Laboratory

Reducing the Performance ?




Simulation by E. Adli on DB decelerator performance

Simulation by E. Adli on DB decelerator performance

N=3

N=4

600

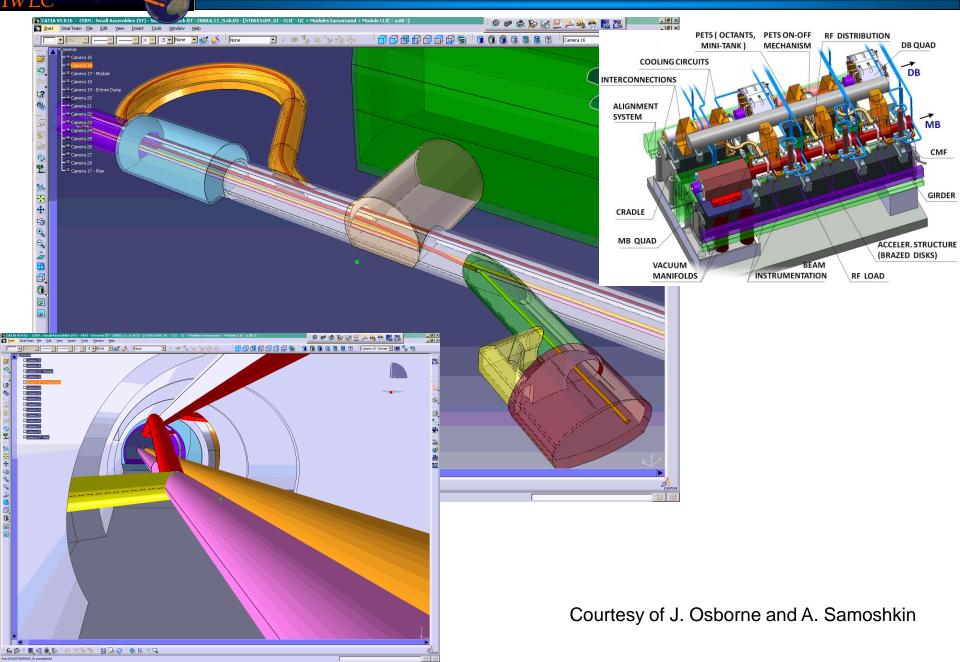
s (m)

800

1000

400

0

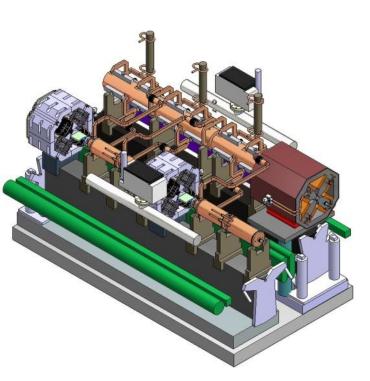

-0.5

0

200


CLIC Tunnel

- Work as just started
- Plan to have functional specifications for the CDR by 2010
- For the Cost estimate
 - Choice of Technology (Cerenkov emission in Optical fiber, Ionization chambers, ...)
 - Investigation of Safety Integrity Level (Need for redundancy ?)



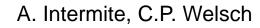
Thomas Otto & Sophie Mallows

Beam loss monitors : Hardware development

Major complication: Two beams & Long train!

Exploitation of Cerenkov-radiation in optical fibres

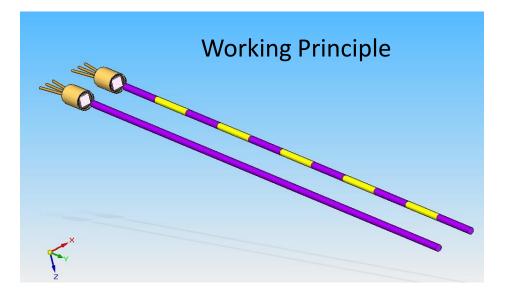
- Based on DESY-Flash work
- 4^x2 fibres around vacuum chamber
- Short individual fibres for true 3D analysis Fast time response


Transverse and longitudinal information

Insensitive against E and B fields

Quite Radiation hard

Limited space requirement of monitor



Beam loss monitors : Hardware development

- Optical Fiber Sensor based on SiPM composed of SPAD Array.
- Two arms:
 - Reference fiber
 - Composite fiber with different losses (~0.45dB)

Features:

- Optical fiber diameter: 1mm² as the dimensions of SiPM active surface.
- Numerical aperture of fibers between 0.22 and 0.63.
- Pure silica and PMMA multimode step index fibers with n = 1.46.
- SiPM recovery time ca. 4 ns. (~ better than PMT)
- SiPM quantum efficiency 15 % in the blue wavelength range

ODR R&D

- Optical Diffraction Radiation: (ATF2 CESR-TA)
 - Used for beam sizes in DB complex in Linear section: Cost saving compared to LWS
 - Used for non interceptive beam energy monitoring along the CLIC Main Beam linac
 - CESR-TA: beam energy 1-5TeV : 1-10um beam size
- Optical Diffraction Radiation by P. Karataev
 - ATF2 2E10 electrons 1.28GeV V<10u and H<100u
 - Synchrotron radiation (from Bends and quads) need to be suppressed to look at ODR using a target with a 1mm diameter hole
 - Silicon wafer with gold coating (aluminium better) :
 - Accuracy of the machining down to fraction of the wavelength
 - ODR:
 - from an edge confirmed
 - from a slit visibility of the interference can give the beam size
 - very sensitive to parallelism and offset : better than $\lambda/10$
 - Experiment:
 - Need to scan to find the minimum
 - Good scan with PMT and : Resolution limit of 12um compared to wire scanners
 - Optical filter 550+/-20nm
 - -Limitations
 - Pre-wave zone effect can be compensated by putting the camera in the focal plane of a lens
 - Photon yield: $2\pi a/\gamma\lambda$ Beam size resolution: >0.05 $\gamma\lambda/2\pi$
 - far field approximation: Minimum target diameter Minimum lens diameter