Model Independent WIMP Searches with Polarized Beams at the ILC

Christoph Bartels

DESY

IWLC Geneva, 18. - 22. October 2010

Outline

Data Simulation and Event Selection

Outline

- Data Simulation and Event Selection
- 3 Parameter Determination
- 4 Summary and Outlook

Single Photon Events and WIMPs at the ILC

WIMP Dark Matter

- Masses of 0.1–1 TeV.
- In thermal equilibrium with SM soup after inflation.
- Weak interactions naturally give observed relic density.
- In SUSY with conserved R-Parity: LSP: $\tilde{\chi}_1^0$ or \tilde{G} .

Pair production at ILC

- $e^+e^- \rightarrow \chi \chi$.
- WIMPs leave detector without further interaction.
- Detection via ISR: $e^+e^- \rightarrow \chi \chi \gamma$.
- Missing ∉.
- Dominant background: $e^+e^- \rightarrow \nu\nu(N)\gamma$.
- Other backgrounds: $e^+e^- \rightarrow \gamma\gamma$, radiative Bhabha-scattering.

Model Independent Production Cross Section Birkedal *et al.* [hep-ph/0403004]

Model independence

- Assume only one DM candidate.
- Constrain WIMP pair annihilation XSec from observation.
- Crossing Symmetrie (annihilation \Rightarrow production).
- ISR.

$$rac{d\sigma}{dx}\sim\kappa_e(P_e,P_p)2^{2J_0}(2S_\chi+1)^2igg(1-rac{4M_\chi^2}{(1-x)s}igg)^{1/2+J_0}$$
 $x=rac{E_\gamma}{\sqrt{s}}$

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.
 - $J_0 = 0$: s-wave annihilation/production.
 - $J_0 = 1$: p-wave annihilation/production.

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Signal shape at threshold provides information on partial wave (s- or p-wave).

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Crossover for s-wave and p-wave signal with same cross section. $(\Rightarrow \text{ important later})$

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Is it possible to extract Masses and J_0 from data? Required Luminosity, Polarised beams? What can we learn about the question mark?

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Cross Sections in DM Picture

- 10.0 GeV < E_{γ} < 220.0 GeV and $|\cos{(\Theta_{\gamma})}|$ < 0.98.
- Assumption: WIMPs couple **ONLY** to e^+e^- .
- $\sqrt{s} = 500$ GeV. Unpolarised beams.

Outline

Data Simulation and Event Selection

Analysis Strategy

- Full detector simulation of relevant backgrounds (SLAC-SM mass production 2008, ILD00). 140 fb⁻¹ of $e^+e^- \rightarrow \nu\nu\gamma$.
- Selection of dominant irreducible background: $e^+e^- \rightarrow \nu\nu\gamma$.
- Division of simulated data into three subsamples:
 - Background sample.
 - Signal sample.
 - Template sample to generate expected distributions.
- Signal generation by reweighting of $\nu\nu\gamma$ with $\sigma(\chi\chi\gamma)/\sigma(\nu\nu\gamma)$.
- χ^2 comparison of Data (S+B) with Templates (S+B).

Remarks

- All presented results preliminary.
- No systematic uncertainties included.
- Analysis limited by low simulated statistics.

• Signal region: 10.0 GeV < E_{γ} < 220.0 GeV; $|\cos(\Theta_{\gamma})|$ < 0.98.

- $N_{\gamma} \leq 2$.
- $N_{tracks} \leq 2$.

• $p_T < 3.0.$

- $E_{vis} E_{\gamma} < 20.0 \text{ GeV}$ and $E_{char} < 2.0 \text{ GeV}$.
- Bhabha rejection with BeamCal.

● *p*_T < 3.0.

- $E_{vis} E_{\gamma} < 20.0 \text{ GeV}$ and $E_{char} < 2.0 \text{ GeV}$.
- Bhabha rejection with BeamCal.

• Selection efficiency of $\nu\nu\gamma \Rightarrow$ signal \approx 70%.

• $S/B = \mathcal{O}(\%)$.

Background: Data and Expectation Templates

- Background expectation modeled from template sample (black) $\sim 50 \text{ fb}^{-1} \Rightarrow \text{low statistics!}$
- Tree level expectation (ννγ, red) corrected for detector effects and beam energy spectrum (full simulation).

Signal: Data and Expectation Templates

Outline

Polarised Cross Sections

Cross section can be rewritten as:

$$\sigma_{P_{e^-}P_{e^+}} = \frac{1}{4}((1+P_{e^-})(1+P_{e^+})\sigma_{RR} + (1-P_{e^-})(1-P_{e^+})\sigma_{LL} + (1+P_{e^-})(1-P_{e^+})\sigma_{RL} + (1-P_{e^-})(1+P_{e^+})\sigma_{LR})$$

 σ_{RR} : Cross section if beams 100% right-handed polarised. Measurement of $\sigma_{RR}, \sigma_{LL}, \sigma_{LR}, \sigma_{RL}$ with data taken with four different polarisation configurations (P_{e^-}/P_{e^+}) .

Two scenarios

•
$$\sigma_{RR} = \sigma_{LL} = \sigma_{LR} = \sigma_{RL} = \sigma_0$$

•
$$\sigma_{LR} = \sigma_{RL} = 2 \times \sigma_0; \quad \sigma_{RR} = \sigma_{LL} = 0$$

Polarised Cross Sections

50 fb⁻¹ each of

 $(P_{e^-}/P_{e^+}) = (0.8/-0.3), (0.8/-0.6), (-0.8/0.3), (-0.8/0.6).$

- $\sigma_0 = 100 \text{ fb}, 150 \text{ GeV p-wave WIMP.}$
- Scenarios indistinguishable.

Polarised Cross Sections

250 fb⁻¹ each of

 $(P_{e^-}/P_{e^+}) = (0.8/-0.3), (0.8/-0.6), (-0.8/0.3), (-0.8/0.6).$

- $\sigma_0 = 100 \text{ fb}, 150 \text{ GeV p-wave WIMP.}$
- σ_{ii} determined to 50%, scenarios clearly distinguishable.

- p-wave 150 GeV WIMP, $\sigma = 100$ fb. $\mathcal{L} = 50$ fb⁻¹.
- Mass recovered with correct assumption $J_0 = 1$ (left).
- Wrong assumption $J_0 = 0$ fits to 170 GeV.

- p-wave 150 GeV WIMP, $\sigma = 100$ fb. $\mathcal{L} = 50$ fb⁻¹.
- Mass recovered with correct assumption $J_0 = 1$ (left).
- Wrong assumption $J_0 = 0$ fits to 170 GeV.

- No sensitivity to shape of threshold due to low statistics.
- Threshold shape drowns in background statistics.
- Sensitivity to cross over point at low energy.

- $P_e = 0.8$, background supression: $\Delta M :\sim 9 \rightarrow \sim 6$ GeV.
- With enough statistics the threshold should be much better visible/detectable.
- Scan of threshold should give information on J_0 .

C. Bartels (DESY)

WIMPS @ ILC

Mass Determination, $P_{e^-} = 0\% P_{e^+} = 0\%$

C. Bartels (DESY)

WIMPS @ ILC

Mass Determination, $P_{e^-} = 0\% P_{e^+} = 0\%$

Mass Determination, $P_{e^-} = 0\% P_{e^+} = 0\%$

C. Bartels (DESY)

WIMPS @ ILC

Mass Determination, $P_{e^-} = 80\% P_{e^+} = 0\%$

Mass Determination, $P_{e^-} = 80\% P_{e^+} = -30\%$

Outline

Data Simulation and Event Selection

Summary

- WIMP detection with ISR, model independent approach.
- SM background dominated environment.
- Full simulation of ILD detector.
- Analysis incorporates detector and beam energy spectrum effects.
- Signal simulation by reweighting irreducible background.
- Extrapolation from 200 to 1000 fb⁻¹: Chiral structure of WIMP couplings can be determined.
- Mass determination with template method.
- $\Delta M/M \approx \mathcal{O}(\%)$.
- Polarised beams increase mass resolution by factor \approx 2, coupling dependent.

Outlook

- Systematic uncertainties.
- More statistics.
- Extraction of J_0 .
- If possible: Interpretation in DM picture (smaller cross sections).