

Comments Conclusions from CLIC (IWLC 2010, Geneva)

Ken Peach (JAI)

- The Collaboration
- Progress
- Present Status & Plans
 - -Post-physical fire
 - -Post-metaphorical fire [MTP]
- The Next Challenges

Disclaimer 1: These are my thoughts

Disclaimer 2: Apologies to those many whose excellent work is not cited – much better done in the other plenary and parallel sessions. I have selected just a few illustrations of where we are

Disclaimer 3: Detectors left to the next session (but a comment)

The Collaboration

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETHZurich (Switzerland) Gazi Universities (Turkey)

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece)

Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) Uppsala University (Sweden) UCSC SCIPP (USA)

New CLIC website: http://clic-study.org/

Compa	act Linear C	ollider	 Home page Contact us Info for CLIC members
CLIC here for Accelerator design and Physics	the future Structure and Organisation	Publications and documents	Internation Workshop Linear Collide 2010 • • Events and meeting
CLIC in a nutshell CLIC design, parameters and layout • Beam Physics CLIC Feasibility issues and R&D	CLIC organisation (Committees and working groups) CLIC/CTF3 Collaboration • List of members and observers • Collaboration map CLIC-ILC Collaboration	General articles Latest general presentations Technical documentation EDMS Media & corporate design Old website	Upcoming meetings • Week's events • 3 Month's events Indico agenda (Committees and working groups) Conferences & workshops

IWLC 2010

Progress

- The issue
 - Small (10%) scans can always be done
 - Tune magnets, detune RF
 - Optimise the machine for one energy
 - Running at much lower (or higher) energy
 - Compromised luminosity
 - Needs a machine reconfiguration
 - Cannot be done quickly (within a few hours)
 - » Can it be done at all?

Progress-1: Energy scanning-2

 Compensate partially for loss of (useful) luminosity from decreasing the RF gradient by increasing the pulse length

E/E_0	n_b	$n_{\mathcal{L}}$	$Q_p/Q_{p,0}$	
1.0	312	1.0	1.0	
0.75	472	1.5	1.12	
0.667	552	1.77	1.18	
0.5	792	2.54	1.27	
0.375	1112	3.56	1.34	
(0.333)	(1272)	(4.08)	(1.36)	
E maximum centre-of-mass				
energy for operation mode				

Progress-2: Accelerating Structures

Delahaye

Wuensch

Progress-2: PETS

• 8 PETS breakdown events in 1.55 10⁷ pulses (125 hours)

- Breakdown rate 5.3 10⁻⁷/pulse [CLIC Goal <2 10⁻⁷/pulse]
 - (excluding the 8 in the cluster 1.3 10⁻⁷/pulse)
- last 80 hours no breakdowns were registered
 - BDR <1.2x10⁻⁷/pulse

4 x combination

- Lower current $\leftarrow \rightarrow$ Missing klystron
- But back in operation continue work

Tecker

specifications successfully demonstrated during the June run

measurements along pulse train

Parameter	Specification	Achieved
Charge per Bunch (nC)	2.33	4.4 🗸
Charge per Train (nC)	4446	>4446 🗸
Train Length (ns)	1273	1300 🗸
Current (A)	3.5	~3.4 🗸
Normalized Emittance (mm mrad)	<25	14 🗸
Energy Spread (%)	<1	0.7 🗸
Energy (MeV)	5.5	5.5 🗸
UV Laser Pulse Energy (nJ)	370	400 🗸
Charge Stability (%)	<0.25 rms 🗧	1-2 🦊
Cathode	Cs_2Te	Cs_2Te 🗸
Quantum Efficiency (%)	3	18 (peak) 🗸
RF Gradient (MV/m)	85	85 🗸
RF Frequency (GHz)	2.99855	2.99855 🗸
Micropulse Repetition Rate (GHz)	1.5	1.5 🗸
Macropulse Repetition Rate (Hz)	1-5	1-5 🗸

Tecker

Ken Peach

John Adams Institute

IWLC 2010

22 October 2010

12

Beam Stability

Two-beam acceleration in CTF3

• => gradient ~55 MV/m

• RF calibrations to be verified

Frank Tecker

CTF3 results

CLIC Feasibility status

System	ltem	Feasibility Issue	Unit	Nominal	Achieved	How	Feasibility
Drive beam generation		Fully loaded accel effic	%	97	95	CTF3	\checkmark
		Freq&Current multipl	-	2*3*4	2*4	CTF3	\sim
	Drive beam	12 GHz beam current	Α	4.5*24 =10 0	3.5*8 = 28	CTF3	
	generation	12 GHz pulse length	nsec	240	240	CTF3	\sim
		Intensity stability	1.E-03	0.75	0.6	CTF3	\checkmark
		Drive beam linac RF phase stability	Deg (1GHZ)	0.05	0.035	CTF3, XFEL	\checkmark
		PETS RF Power	MW	130	130	TBTS/SLAC	\checkmark
	Beam	PETS Pulse length	ns	170	>170	TBTS/SLAC	1
	Driven RF	PETS Breakdown rate	/m	< 1.10-7	>1.2 10-6	TBTS/SLAC	
Two Beam	power	PETS ON/OFF	-	@ 50Hz	-	CTF3/TBTS	2011
Acceleration	generation	Drive beam to RF efficiency	%	<mark>90</mark> %	-	CTF3/TBL	2010-11
		RF pulse shape control	%	< 0.1%	-	CTF3/TBTS	2010-11
	Accelerating	Structure Acc field	MV/m	100	100	CTF3 Test Stand SLAC	
Acceleratin	Structures	Structure Flat Top Pulse length	ns	170	170		\checkmark
	(CAS)	Structure Breakdown rate	/m MV/m.ns	< 3.10-7	5·10-5(D)	KEK	2010-11
	(0,10)	Rf to beam transfer efficiency	%	27	15		2010-11
		Power producton and probe beam	MV/m - ns	100 - 170	55 - 170	TBTS	2011-12
	Two Beam	acceleration in Two beam module	WW/III - 115 100 - 170	55 - 170	1210	2011-12	
Acceleratio	Acceleration	Drive to main beam timing stability	psec	0.05	-	CTF3	2012
		Main to main beam timing stability	psec	0.07	-	CTF3	2012
Ultra low beam emittance &	Ultra low	Emitttance generation H/V	nm	500/5	3000/12	ATF, NSLS/SLS	
	Emittances	Emittance preservation: Blow-up	nm	160/15	160/15	+ simulation	2010-12
	Alignment	Main Linac components	microns	15	10 (princ.)	Alignement &	2010
		Final-Doublet	microns	2 to 8		Mod.Test Bench	2010
sizes	Vertical stabilisation	Quad Main Linac	nm>1 Hz	1.5		Stabilisation	
					0.13	Test Bench	2010-12
	Salomaadon	Final Doublet (assuming feedbacks)	nm>4 Hz	0.2	(principle)	reaction of the	

• ILWC: experimental results and plans scrutinized

- compared with parameter specifications for feasibility demonstration.

Present Status & Plans

"Circumstances Beyond Our Control"

• The fire (March 4th)

- The "Lehman" effect
 - Reduced CERN budget

2011-2015

(Lehman: 16/9/08 CERN impact 16/6/10)

IWLC 2010

22 October 2010

17

Schedule (February 2010)

Ken Peach Jo

John Adams Institute

IWLC 2010

Schedule (updated)

Ken Peach

John Adams Institute

IWLC 2010

- Many feasibility issues addressed

 e.g. RF phase stability
- 6 months delay in the final 3 goals
 - Measurement of effect of beam loading on breakdown rate
 - Test of new PETS on-off scheme
 - TBL studies 30% deceleration
 - Serious but not catastrophic
 - Delay on CDR less
 - but delay in presentation to SPC
- On track to complete CDR next year

- Increase in resources for CLIC
 - Materials $11.9 \rightarrow 19.0MCHF$
 - Personnel 12.8→10.9MCHF
 - Overall increase ~60%
 - but
 - Shortage of manpower

CLIC Tentative Schedule

IWLC 2010

Corsini

Detectors

CLIC CDR Volume 3: Physics & Detectors

- It will be carried by the entire Linear Collider Community, the Editors represent all regions
- Input from ILC detector concepts, R&D collaborations, theorists
- CDR to focus on 3 TeV case
- Goals of Vol. 3
 - Describe the CLIC physics potential
 - Show that CLIC physics can be measured with adequate precision
- Four Main Editors
 - Lucie Linssen (CERN)
 - Akiya Miyamoto (KEK, Asia)
 - Marcel Stanitzki (RAL, Europe)
 - Harry Weerts (ANL, Americas)

Stanitski

CLIC CDR: P&D Editorial Team

	CLIC_SID	CLIC_ILD
Vertex detector	inner radius 2.7 cm 5 single barrel layers 6 single layer forward disks	inner radius 3.1 cm 3 double layers 3 double layer pixel forward disks
Tracker	Si, unchanged	TPC, unchanged
ECAL	unchanged	unchanged
HCAL Barrel	W+Scintillator, 3x3 cm tiles 7.5 ∧ 1 cm plates W+RPC, 1x1 cm tiles 7.5 ∧ 1 cm plates	W+Scintillator, 3x3 cm tiles 7.5 ∧ 1 cm plates
HCAL Endcap	Fe+Scintillator, 3x3 cm tiles 7.5 Λ _i 2 cm plates Fe+RPC, 1x1 cm tiles, 7.5 Λ _i 2 cm plates	Fe+Scintillator, 3x3 cm 7.5 ∧ _i 2 cm plates
Coil	5T, Radius=2.68 m	4T, Radius=3.35 m

Ken Peach John Adams Institute

IWLC 2010

22 October 2010

Stanitski

The Next Challenges

From Rolf on Monday ...

- LHC will have results on masses of SUSY particles (squarks, gluinos) up to/beyond around 800 GeV by end of 2011
- LHC and Tevatron together will have results on Higgs mass exclusion or even possible allowed mass range up to around 500 GeV by end 2011
 - 2012 could be a decisive year concerning LC (in time with update of European strategy)

10

... and from Steinar

Ken Peach John A

John Adams Institute

IWLC 2010

CLC We need to be ready to assess the implications

ew couplings

What can we expect from LHC and Tevatron

- LHC will have results on masses of SUSY particles (squarks, gluinos) up to/beyond around 800 GeV by end of 2011
- LHC and Tevatron together will have results on Higgs mass exclusion or even possible allowed mass range up to around 500 GeV by end 2011
 - 2012 could be a decisive year concerning LC (in time with update of European strategy)

Physics – very short Yes Yes ► SUSY? Higgs Measure as many parameters as possible Extrapolation to GUT scale shows way LC fills LHC loopholes to breaking mechanism LC can see signals of SEWSB Measure properties of dark matter LC sensitive to new gauge sector with high precision Тор Higgs properties guide way to model of EWSB Several models have additional gauge bosons (ED, little Higgs) Precision mass &

Physics potential of a linear e+e- collider (Klaus Moenig): http://indico.cern.ch/materialDisplay.py?contribId=0&materialId=slides&confld=69540

Ken Peach

IWLC 2010

10

- Excellent technical progress to the CDR
 - Delayed ~6 months by the fire
 - Address remaining feasibility issues
 - On track for CDR by end 2011
- Plans developed for the post-CDR phase
 Disrupted by the financial crisis
 - But a revised plan emerging

Opportunities for greater collaboration
 – Prepare for the post 2012 landscape

- New connections ILC ← → CLIC?
- New organisational structures?

Wait for "good news" from the LHC

Thank you

Corsini