

## SB2009/ Low energy running for ILC

-----

#### **International Workshop on Linear Colliders 2010**

Andrei Seryi John Adams Institute

19 October 2010

## Outline

- SB 2009 parameter development (end 2009 early 2010)
  - Optimization of cost / performance
    - Central region integration
    - Lower current with tighter & travelling focussing
    - Same Luminosity at nominal energy
    - Challenge at lower E due to reduced collision rate
- LCWS10 discussion of the parameter set and tentative evaluation of double rep rate at low E
  - A solution to restore Luminosity at low E was found
- Mid 2010 development of the new parameters and finalization of a tentative set
- BAW-2 January 2011

#### SLIDES FROM LCWS2010 Beam Parameters

|                                                        | RDR  |      |      | SB2009 w/o TF |       |      | SB2009 w TF |       |       |      |      |
|--------------------------------------------------------|------|------|------|---------------|-------|------|-------------|-------|-------|------|------|
| CM Energy<br>(GeV)                                     | 250  | 350  | 500  | 250.a         | 250.b | 350  | 500         | 250.a | 250.b | 350  | 500  |
| Ne- (*10 <sup>10</sup> )                               | 2.05 | 2.05 | 2.05 | 2             | 2     | 2    | 2.05        | 2     | 2     | 2    | 2.05 |
| Ne+ (*10 <sup>10</sup> )                               | 2.05 | 2.05 | 2.05 | 1             | 2     | 2    | 2.05        | 1     | 2     | 2    | 2.05 |
| nb                                                     | 2625 | 2625 | 2625 | 1312          | 1312  | 1312 | 1312        | 1312  | 1312  | 1312 | 1312 |
| Tsep (nsecs)                                           | 370  | 370  | 370  | 740           | 740   | 740  | 740         | 740   | 740   | 740  | 740  |
| F (Hz)                                                 | 5    | 5    | 5    | 5             | 2.5   | 5    | 5           | 5     | 2.5   | 5    | 5    |
| γex (*10 <sup>-6</sup> )                               | 10   | 10   | 10   | 10            | 10    | 10   | 10          | 10    | 10    | 10   | 10   |
| γey (*10 <sup>-6</sup> )                               | 4    | 4    | 4    | 3.5           | 3.5   | 3.5  | 3.5         | 3.5   | 3.5   | 3.5  | 3.5  |
| βx                                                     | 22   | 22   | 20   | 21            | 21    | 15   | 11          | 21    | 21    | 15   | 11   |
| βy                                                     | 0.5  | 0.5  | 0.4  | 0.48          | 0.48  | 0.48 | 0.48        | 0.2   | 0.2   | 0.2  | 0.2  |
| σ <b>z (mm)</b>                                        | 0.3  | 0.3  | 0.3  | 0.3           | 0.3   | 0.3  | 0.3         | 0.3   | 0.3   | 0.3  | 0.3  |
| σx eff (*10 <sup>-9</sup> m)                           | 948  | 802  | 639  | 927           | 927   | 662  | 474         | 927   | 927   | 662  | 474  |
| σy eff (*10 <sup>-9</sup> m)                           | 10   | 8.1  | 5.7  | 9.5           | 9.5   | 7.4  | 5.8         | 6.4   | 6.4   | 5.0  | 3.8  |
| L (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 0.75 | 1.2  | 2.0  | 0.2           | 0.22  | 0.7  | 1.5         | 0.25  | 0.27  | 1.0  | 2.0  |

Rate at IP = 2.5Hz,

Rate in the linac = 5Hz (every other pulse is at 150GeV/beam, for e+ production)

Low luminosity at this energy reduces the physics reach

ΪĹ



A. Seryi, 19 Oct 2010, IWLC2010

# Work on mitigations of L(E) with SB2009 during ILC2010

 Discussion of double rep rate was initiated ~month before the ILC2010

this allowed achieving significant progress at LCWS10

- Doubling the rep rate (below ~125GeV/beam)
  - BDS WG discussed implications with other Working Groups:
    - DR => OK (new conceptual DR design was presented)
    - Sources => OK
    - Linac, HLRF, Cryogenics => OK
- FD optimized for ~250GeV CM
  - Shorter FD reduce beam size in FD and increase collimation depth, reducing collimation related beam degradation
  - Will consider exchanging FD for low E operation or a more universal FD that can be retuned

#### SLIDES FROM LCWS2010

## SLIDES FROM LCWS2010 Lumi(E) dependence in SB2009

- Factor determine shape of L(E) in SB2009
  - Lower rep (/2) rate below ~125GeV/beam
  - Collimation effects: increased beam degradation at lower E due to collimation wakes and due to limit (in X) on collimation depth
- Understanding the above limitations, one can suggest mitigation solutions:
  - 1) Consider doubling the rep rate at lower energy
  - 2) Consider Final Doublet optimized for 250GeV CM



8 damping times are needed for the vertical emittance

 $5 \text{ Hz} \Rightarrow \tau_x = 26 \text{ ms}$ 

10 Hz **⇒** τ<sub>x</sub> = 13 ms

SLIDES FROM LCWS2010

A. Seryi, 19 Oct 2010, IWLC2010

### DR Parameters for 10 Hz Operation

|                      |                                                                                                                   | S. Guiducci (LNF) et a                                                                                                                                                                                                              |                                                                                                                                                                                                              |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RDR                  | TILC08                                                                                                            | SB2009                                                                                                                                                                                                                              | High Rep                                                                                                                                                                                                     |  |  |  |  |
| 6695                 | 6476                                                                                                              | 3238                                                                                                                                                                                                                                | 3238                                                                                                                                                                                                         |  |  |  |  |
| 25.7                 | 21                                                                                                                | 24                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                           |  |  |  |  |
| 0.51                 | 0.48                                                                                                              | 0.53                                                                                                                                                                                                                                | 0.57                                                                                                                                                                                                         |  |  |  |  |
| 2                    | 2                                                                                                                 | 2                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                            |  |  |  |  |
| 8.7                  | 10.3                                                                                                              | 4.4                                                                                                                                                                                                                                 | 8.4                                                                                                                                                                                                          |  |  |  |  |
| $1.3 \times 10^{-3}$ | $1.3 \times 10^{-3}$                                                                                              | $1.2 \times 10^{-3}$                                                                                                                                                                                                                | 1.5×10 <sup>-3</sup>                                                                                                                                                                                         |  |  |  |  |
| 9                    | 6                                                                                                                 | 6                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                            |  |  |  |  |
| 24                   | 21                                                                                                                | 7.5                                                                                                                                                                                                                                 | 13.4                                                                                                                                                                                                         |  |  |  |  |
| 0.40                 | 0.43                                                                                                              | 0.43                                                                                                                                                                                                                                | 0.43                                                                                                                                                                                                         |  |  |  |  |
| 3.5                  | 4.4                                                                                                               | 1.9                                                                                                                                                                                                                                 | 3.6                                                                                                                                                                                                          |  |  |  |  |
| 18                   | 16                                                                                                                | 8                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                           |  |  |  |  |
| 1.67                 | 1.6                                                                                                               | 1.6                                                                                                                                                                                                                                 | 2.4                                                                                                                                                                                                          |  |  |  |  |
| 0.4                  | 0.4                                                                                                               | 0.4                                                                                                                                                                                                                                 | 0.28                                                                                                                                                                                                         |  |  |  |  |
| 2.45                 | 2.45                                                                                                              | 2.45                                                                                                                                                                                                                                | 1.72                                                                                                                                                                                                         |  |  |  |  |
| 200                  | 216                                                                                                               | 78                                                                                                                                                                                                                                  | 75                                                                                                                                                                                                           |  |  |  |  |
| 80                   | 88                                                                                                                | 32                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                           |  |  |  |  |
|                      | RDR   6695   25.7   0.51   2   8.7   1.3×10 <sup>-3</sup> 9   24   0.40   3.5   18   1.67   0.4   2.45   200   80 | RDRTILC08 $6695$ $6476$ $25.7$ $21$ $0.51$ $0.48$ $2$ $2$ $8.7$ $10.3$ $1.3 \times 10^{-3}$ $1.3 \times 10^{-3}$ $9$ $6$ $24$ $21$ $0.40$ $0.43$ $3.5$ $4.4$ $18$ $16$ $1.67$ $1.6$ $0.4$ $0.4$ $2.45$ $2.45$ $200$ $216$ $80$ $88$ | RDRTILC08SB200966956476323825.721240.510.480.532228.710.34.41.3×10 <sup>-3</sup> 1.3×10 <sup>-3</sup> 1.2×10 <sup>-3</sup> 96624217.50.400.430.433.54.41.9181681.671.61.60.40.40.42.452.452.4520021678808832 |  |  |  |  |

#### Energy = 5 GeV

#### DR (3.2km) at 10Hz is feasible

A. Seryi, 19 Oct 2010, IWLC2010

Global Design Effort

SLIDES FROM LCWS2010

## **Double rep rate: Sources**

- Electron Source:
  - doubling rep rate is not critical [Axel Brachmann, Tsunehiko Omori et al]
- Positron Source:
  - For SB2009 250b case there should be no issues
    - For 250a, which is not a preferred solution, the most important consequence of the increased rep rate will be the increased average power on the positron target
    - Even for this case there is a hope that it can be managed, but need more detailed studies [Jim Clarke, Wei Gai, et al]

A. Seryi, 19 Oct 2010, IWLC2010

ÌÌĻ

Global Design Effort

SLIDES FROM LCWS2010



- At lower gradient, considering the cryo load (which should not be exceeded) and the efficiency of rf power sources (their efficiency decreases with power) concluded, that at 125 GeV/beam one can work at 10Hz rep rate in the linac
- At 150GeV/beam one can work at 8Hz in the linac
  - And this is possible only because the e+ source is at the end of the linac!

Chris Adolphsen, et al

=> SB2009 OK for linac rep rate 10 Hz for 125 GeV/beam & 8 Hz for 150 GeV/beam

Global Design Effort SLIDES FROM LCWS2010

FD for low E

FD optimized for lower energy will allow increasing the collimation depth by ~10% in Y and by ~30% in X (Very tentative!)

 One option would be to have a separate FD optimized for lower E, and then exchange it before going to nominal E

 Other option to be studied is to build a universal FD, that can be reconfigured for lower E configuration (may require splitting QD0 coil and placing sextupoles in the middle)





A. Seryi, 19 Oct 2010, IWLC2010

### SLIDES FROM LCWS2010 Beam Parameters & mitigation

|                                                        | RDR  |      |      | SB2009 w/o TF |       |      |      | SB2009 w TF |       |      |      |
|--------------------------------------------------------|------|------|------|---------------|-------|------|------|-------------|-------|------|------|
| CM Energy<br>(GeV)                                     | 250  | 350  | 500  | 250.a         | 250.b | 350  | 500  | 250.a       | 250.b | 350  | 500  |
| Ne- (*10 <sup>10</sup> )                               | 2.05 | 2.05 | 2.05 | 2             | 2     | 2    | 2.05 | 2           | 2     | 2    | 2.05 |
| Ne+ (*10 <sup>10</sup> )                               | 2.05 | 2.05 | 2.05 | 1             | 2     | 2    | 2.05 | 1           | 2     | 2    | 2.05 |
| nb                                                     | 2625 | 2625 | 2625 | 1312          | 1312  | 1312 | 1312 | 1312        | 1312  | 1312 | 1312 |
| Tsep (nsecs)                                           | 370  | 370  | 370  | 740           | 740   | 740  | 740  | 740         | 740   | 740  | 740  |
| F (Hz)                                                 | 5    | 5    | 5    | 5             | 2.5   | 5    | 5    | 5           | 2.5   | 5    | 5    |
| γ <b>ex (*10</b> -6)                                   | 10   | 10   | 10   | 10            | 10    | 10   | 10   | 10          | 10    | 10   | 10   |
| γey (*10 <sup>-6</sup> )                               | 4    | 4    | 4    | 3.5           | 3.5   | 3.5  | 3.5  | 3.5         | 3.5   | 3.5  | 3.5  |
| βx                                                     | 22   | 22   | 20   | 21            | 21    | 15   | 11   | 21          | 21    | 15   | 11   |
| βy                                                     | 0.5  | 0.5  | 0.4  | 0.48          | 0.48  | 0.48 | 0.48 | 0.2         | 0.2   | 0.2  | 0.2  |
| σz (mm)                                                | 0.3  | 0.3  | 0.3  | 0.3           | 0.3   | 0.3  | 0.3  | 0.3         | 0.3   | 0.3  | 0.3  |
| σx eff (*10 <sup>-9</sup> m)                           | 948  | 802  | 639  | 927           | 927   | 662  | 474  | 927         | 927   | 662  | 474  |
| σy eff (*10 <sup>-9</sup> m)                           | 10   | 8.1  | 5.7  | 9.5           | 9.5   | 7.4  | 5.8  | 6.4         | 6.4   | 5.0  | 3.8  |
| L (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 0.75 | 1.2  | 2.0  | 0.2           | 0.22  | 0.7  | 1.5  | 0.25        | 0.27  | 1.0  | 2.0  |

• Tentative! At 250 GeV CM the mitigations may give

- \* 2 L due to double rep rate
- \* about 1.4 L due to FD optimized for low E



A. Seryi, 19 Oct 2010, IWLC2010

## Post LCWS10 developments

- Working group to evaluate various aspects of new parameter sets – led by PMs
- All (almost) questions resolved on the feasibility level
  - A new issue related to DR duty factor has been identified under investigation
- Detailed design studies should follow

## New parameters based on the following assumptions

- Starting point: parameters developed by the Physics Questions Committee (B. Foster, A. Seryi, J. Clarke, M. Harrison, D. Schulte, T. Tauchi) in December 2009.
- Take into account progress on 10Hz rep rate for low E achieved after LCWS10
  - There are issues with DR duty cycle that are being studied, however assume that they will be solved
- Assume that we will develop and use new universal FD that gives additional luminosity improvement (only) for 200 and 250 GeV energies
- Consider the following energies: 200, 250, 350, 500 GeV CM
- Assume single stage bunch compressor (min sigma\_z=230um will use 300um and consider 230 as an overhead or safety margin)
- Assume 10Hz and 1300 bunches
- Consider separately the cases with and without Travelling Focus
- Energy and rep rate:

| • | E=          | 200         | 250     | 350 | 500 | GeV CM |
|---|-------------|-------------|---------|-----|-----|--------|
| • | IP rep rate | 5           | 5       | 5   | 5   | Hz     |
| • | Linac rate  | 10          | 10      | 5   | 5   | Hz     |
|   |             | ( double pu | Ilsing) |     |     |        |

:lr

İİL

## **BAW-2 Themes**

|                               |                 |                                                |      |      |      |      |      | upgrade |
|-------------------------------|-----------------|------------------------------------------------|------|------|------|------|------|---------|
| <b>Centre-of-mass energy</b>  | $E_{cm}$        | GeV                                            | 200  | 230  | 250  | 350  | 500  | 1000    |
| Luminosity                    | L               | $\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$ | 0.5  | 0.5  | 0.7  | 0.8  | 1.5  | 2.8     |
| Luminosity (Travelling Focus) | L <sub>TF</sub> | $\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$ | 0.5  |      | 0.8  | 1.0  | 2.0  |         |
| Number of bunches             | $n_b$           |                                                | 1312 | 1312 | 1312 | 1312 | 1312 | 2625    |
| Collision rate                | $f_{rep}$       | Hz                                             | 5    | 5    | 5    | 5    | 5    | 4       |
| Electron linac rate           | $f_{linac}$     | Hz                                             | 10   | 10   | 10   | 5    | 5    | 4       |
| Positron bunch population     | $N_+$           | $\times 10^{10}$                               | 2    | 2    | 2    | 2    | 2    | 2       |

Formally agreed parameter sets across energy range ILC-EDMS document ID 925325

http://ilc-edmsdirect.desy.de/ilc-edmsdirect/document.jsp?edmsid=\*925325

ilc

## Conclusion

- The RDR (2007) focused on nominal energy
- Parameter set that maintains the physics reach and optimizes the cost/performance has been developed
- Future studies
  - Design of the universal final doublet
  - Optimization of collimation depth
  - Study of FF tuning with needed beta\*
  - Detailed beam-beam studies
  - Damping ring design