Low Energy Running for CLIC

D. Schulte for the CLIC team

IWLC2010, October 2010

Introduction

- \bullet Luminosity below $3\,\mathrm{TeV}$ is also important
- Two strategies to adress this
 - build a lower centre-of-mass energy machine first
 - \Rightarrow energy staging
 - operate the $3\,\mathrm{TeV}$ CLIC at lower energies
 - \Rightarrow energy scan capability
- The energy scan capability is also import if one first needs to identify the interesting energy
- \bullet For CLIC, we do not yet have a full energy staging
 - but a conceptual design for $500\,{\rm GeV}$ based on the $3\,{\rm TeV}$
- \bullet We also developed an energy scan concept for $3\,\mathrm{TeV}$

Reminder: 3 TeV Design

- \bullet The $3\,TeV$ design has been fully optimised for cost
- Limits were taken into account from
 - accelerating RF structures
 - beam physics
- The power efficiency is very high for the final parameter set
- Further improvements might be possible as studies continue

Rational for CLIC 500 ${\rm GeV}$ Design

- The energy has been picked as an example
 - should eventually design for specific energy (e.g. $350 \,\mathrm{GeV}$ for Higgs+top)
- \bullet The parameter choice for $500\,{\rm GeV}$ has been performed as for $3\,{\rm GeV}$
 - but less information available in the moment (e.g. no cost model)
 - \Rightarrow more work is required for further optimisation
- \bullet The $500\,{\rm GeV}$ design has been made
 - keeping the upgrade to $3\,\mathrm{TeV}$ in mind
 - e.g. constant RF pusle length, so drive beam complex can be re-used
 - but not optimising the cost of the staged approach
 - not even fully optimising the cost of the $500\,{\rm GeV}$

Parameters for 500 GeV

- Upgrade has been repected by
 - keeping RF pulse length constant
 - using similar power per structure
 - \Rightarrow so CLIC drive beam components can be reused for $3\,{\rm TeV}$
- Some parameters have been modified to ease requirements
 - larger horizontal beam emittances, to ease damping ring requirements
 - we aimed for better luminosity spectrum than at $3\,{\rm TeV}$ (comparable to ILC)
 - \Rightarrow the optimisation drives toward larger bunch charges
- Optimisation yielded
 - lower main linac gradient($80 \, \mathrm{MV/m}$)
 - larger bunch charge
 - slightly more bunches per train

parameter	units	CLIC	CLIC	ILC (RDR)
E_{cms}	[TeV]	0.5	3.0	0.5
f_{rep}	[Hz]	50	50	5
n_b		354	312	2625
σ_x	[nm] [nm]	202	40	655
σ_y		2.26	1	5.7
Δt	[ns]	0.5	0.5	369
N	$[10^9]$	6.8	3.7	20
ϵ_x	$[\mu \mathrm{m}]$ [nm]	2.4	0.66	10
ϵ_y		25	20	40
eta_x	[mm]	8	4	21
eta_y	[mm]	0.1	0.07	0.4
L_{total}	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.3	5.9	2.0
$L_{0.01}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.4	2.0	1.45
n_γ		1.3	2.2	1.3

Beam-Beam Effects and Background

- Luminosity and luminosity spectrum are comparable to ILC
- Background is reduced
 - coherent pairs virtually disappear
 - hadronic events comparable to ILC
 - incoherent pairs comparable to ILC

parameter	units	CLIC	CLIC	ILC (RDR)
E_{cms}	[TeV]	0.5	3.0	0.5
f_{rep}	[Hz]	50	50	5
n_b		354	312	2625
Δt	[ns]	0.5	0.5	369
L_{total}	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.3	5.9	2.0
$L_{0.01}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.4	2.0	1.45
n_γ		1.3	2.2	1.3
$\Delta E/E$		0.07	0.29	0.024
N_{coh}	$[10^5]$	10^{-3}	3.8×10^{3}	
E_{coh}	$[10^3 \mathrm{TeV}]$	0.015	2.6×10^5	
n_{incoh}	$[10^6]$	0.08	0.3	0.1
E_{incoh}	$[10^6 \text{GeV}]$	0.36	22.4	0.2
n_{\perp}		20.5	45	28
n_{had}		0.19	2.7	0.12

Draft Physics Request for Energy Scan

- \bullet Applies to CLIC at $3\,{\rm TeV}$
- Run at full energy first, based on the results then run at lower energy
- Operation at lower energies with
 - luminosity in peak 60% of the value at $1.5\,\mathrm{TeV}$
 - luminosity in peak 40% of the value at $1\,\mathrm{TeV}$
- At each energy one must be able to perform scans with limited range
- Here, we will focus on large energy variations
 - assuming runs are for some months, so setup time is not too important
 - with limited hardware modification at the time of energy change, i.e. final doublet may need to be exchanged to increase aperture
- Note: small scans can be performed by tuning magnets strengths and RF

Options to Change Beam Energy

- Why not just change the gradient and keep the other beam parameters?
 - we push the beam current at $3\,\mathrm{TeV}$ as much as we dare
 - \Rightarrow at lower energy the beam is not stable
 - \Rightarrow the beam energy spread will be larger
- So options are
 - 1) extract beam at low energy
 - 2) remove the end of the linac (so you better do not want to go up again)
 - \Rightarrow For both of these solutions bunch charge remains unchanged
 - 3) use a lower gradient ($G = G_0 E/E_0$)
 - adjust the bunch charge
 - 4) reduce the gradient in the second part of the linac or even decelerate
 - wastes power

Extraction at Low Energy

• Can extract the beam at low energy with a dog-leg

- Extraction points can be built in from the beginning
 - need several extraction points
 - loose length for each extraction point (F. Stulle: example design about 200 ${
 m m}$ at 500 ${
 m GeV}$)
 - need space for the transport line for the low energy beam
 - local change of fill factor impacts drive beam cost/efficiency
 - \Rightarrow this option can be considered if the cost is acceptable
- installation after construction not excluded but not nice

Luminosity for Low Energy Extraction

- \bullet Use Rogelio's $3\,{\rm TeV}$ BDS
- BDS magnetic fields scaled
 - final double most likely needs to be exchanged for changes of more than \approx 10%
 - allows to have larger aperture
- To first order expect linear decrease of luminosity with energy
 - \Rightarrow see slightly better performance at medium energies
 - most likely due to reduced radiative effects

Gradient Reduction

- We can use a lower accelerating gradient ($G \approx G_0 E/E_0$)
 - constant gradient along the linac
 - $\Rightarrow N/N_0 = G/G_0$ ensures constant beam stability

$$\frac{\Delta y'}{\sigma_{y'}} \propto \frac{N\sigma_y}{E} \frac{1}{\sigma_{y'}} \propto \frac{N\beta}{E}$$

- can keep BDS apertures constant, but could profit further from larger final quadrupole aperture
- \Rightarrow static imperfections will be less severe \Rightarrow slight gain in emittances

• This is our baseline option

Total Luminosity

- Significant luminosity loss due to charge reduction
- \Rightarrow Need to compensate
 - Spectrum improves with lower energy
 - in particular for reduced charge

Luminosity in Peak

Gradient Reduction and Luminosity Recovery Strategy

- The gradient is reduced by reducing the drive beam current via
 - a) reducing the bunch charge
 - \Rightarrow can increase repetition rate
 - b) reducing the number of bunches per unit time
 - \Rightarrow can increase main beam pulse length
 - c) using the on/off mechanism
- \bullet c) is used for fine-tuning but would waste power \Rightarrow ignore it
- We use a) as a baseline, option b) is studied as an alternative

Pulse Length Variation: Drive Beam Scheme

Drive Beam Scheme II

Nominal Delay Loop and Combiner Ring

- The pulse length is defined by the geometry of the accelerator
 - \Rightarrow cannot change it arbitrarily

Modified Pulse Length

- Well, some bird triggered an idea
- With small modification of delay loop we can change the combination factor and increase the pulse length
- Can accept longer pulses in main linac since the power is lower
 - strongest constraint from temperatur $P\sqrt{ au} \leq P_0\sqrt{ au_0}$
- For $G/G_0 \leq 3/4$ can use upper scheme
 - $\Rightarrow 80 \, \mathrm{ns}$ longer pulse
 - $\Rightarrow 160 \text{ extra bunches per train}$

Operation Modes and Luminosity

E/E_0	n_b	$n_{\mathcal{L}}$	$Q_p/Q_{p,0}$	
1.0	312	1.0	1.0	
0.75	472	1.5	1.12	
0.667	552	1.77	1.18	
0.5	792	2.54	1.27	
0.375	1112	3.56	1.34	
(0.333)	(1272)	(4.08)	(1.36)	

 $E\,$ maximum centre-of-mass energy for operation mode

 n_b number of bunches per main beam pulse

 $n_{\mathcal{L}}$ resulting increase in luminosity

 $Q_p/Q_{p,0}$ maximum charge per pulse compared to nominal case

Note: last mode conflicts with damping ring at $1\,GHz$ and is not part of the baseline

- \Rightarrow Achieve about 28 % at $1 \,\mathrm{TeV}$
- \Rightarrow Achieve about 57 % at $1.5 \,\mathrm{TeV}$
- \Rightarrow Achieve about 80 % at 2 TeV

Comparison to Natural Scaling

 \Rightarrow Very close to natural scaling of $\mathcal{L}/\mathcal{L}_0 \propto E/E_0$

Beam-Beam Effects and Background

- At lower energy background is reduced
 - luminosity is lower
 - number of photons is smaller
- $\Rightarrow {\sf Very \ good \ experimental \ conditions}$

B. Dalena

Beam-beam Effects for Early Extraction

- At lower energies the luminosity spectrum improves
 - \Rightarrow could try to squeeze beam more for more luminosity
 - but hard to do, requires detailed study
- The background is reduced

B. Dalena

Issues of Baseline Solution

- We went through the impact of the baseline energy scan on the CLIC design
 - ⇒ some small adjustments were needed to cope with longer bunch trains
 - \Rightarrow but straightforward
- Some beam dynamics issues have been studied
 - Do the gaps in the drive beam pulse cause problems in the decelerator?

 \Rightarrow No.

- What is the emittance growth in the main linac (slower damping of energy spread)?
 - \Rightarrow Better than at nominal energy

E. Adli, B. Dalena

bpmres 0.1 $\mu\text{m},$ DFS wgt 1000., DFS iter 3, # machine=100

Additional Option: Repetition Rate Increase

- Can reduce the drive beam bunch charge
 - \Rightarrow can reduce drive beam energy
 - \Rightarrow need less power in drive beam accelerator
 - \Rightarrow at $\approx 70 \,\mathrm{MV/m}$ half the drive beam power needed
 - \Rightarrow could use this to double the repetition rate
- But a number of problems to solve
 - klystron efficiency is reduced at lower power
 - machine protection has less time
- $\Rightarrow \mathsf{More} ~\mathsf{work} ~\mathsf{needed}$

Further Work

- Improvement of details of current baseline
 - optimisation of the BDS for lower energies in energy scan, without compromising $3\,{\rm TeV}$ performance
 - reduction of emittances for smaller bunch charges
- Study the higher repetition rate option
 - klystron efficiency at lower power
 - machine protection (shorter time between pulses)

- . . .

- Study extraction option if required
 - will reduce maximum beam energy or lengthen machine/increase cost
- \bullet Explore energy scan of $500\,{\rm GeV}$ machine

Conclusion

- \bullet CLIC parameters and conceptual design exist for for $500\,{\rm GeV}$
 - better integration into energy staging possible
- \bullet A baseline exists for the low energy operation of the $3\,\mathrm{TeV}$ CLIC
 - achieves $\mathcal{L}_{0.01}/\mathcal{L}_{0.01,0} \approx 27\,\%$ at $1\,\mathrm{TeV}$
 - and $\mathcal{L}_{0.01}/\mathcal{L}_{0.01,0}\approx 55\,\%$ at $1.5\,\mathrm{TeV}$
 - further improvements possible
- alternative options require more study
 - early extraction points
 - higher repetition rate
- \bullet Energy scan for $500\,{\rm GeV}$ machine and design of $1\,{\rm TeV}$ machine

Luminosity and Background Values

parameter	units	CLIC(cons)	CLIC(nom)	CLIC(cons)	CLIC	ILC (RDR)
E_{cms}	[TeV]	0.5	0.5	3.0	3.0	0.5
f_{rep}	[Hz]	50	50	50	50	5
n_b		354	354	312	312	2625
σ_x	[nm]	248	202	83	40	655
σ_y	[nm]	5.7	2.26	1	1	5.7
Δt	[ns]	0.5	0.5	0.5	0.5	369
N	$[10^9]$	6.8	6.8	3.7	3.7	20
ϵ_x	$[\mu { m m}]$	3.0	2.4	2.4	0.66	10
ϵ_y	[nm]	40	25	20	20	40
β_x	[mm]	10	8	8	4	21
eta_y	[mm]	0.4	0.1	0.1	0.07	0.4
L _{total}	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.88	2.3	2.7	5.9	2.0
$L_{0.01}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	0.58	1.4	1.3	2.0	1.45
n_γ		1.1	1.3	1.2	2.2	1.30
$\Delta E/E$		0.045	0.07	0.13	0.29	0.024
N_{coh}	$[10^5]$	10^{-4}	10^{-3}	5×10^2	3.8×10^3	
E_{coh}	$[10^3 \mathrm{TeV}]$	0.001	0.015	4×10^4	2.6×10^5	
n_{incoh}	$[10^6]$	0.03	0.08	0.11	0.3	0.1
E_{incoh}	$[10^6 \text{GeV}]$	0.14	0.36	7.2	22.4	0.2
n_{\perp}		8	20.5	19	45	28
n_{had}		0.07	0.19	0.75	2.7	0.12

Resulting Luminosity I

Resulting Luminosity II

Modified Pulse Length (cont.)

- For $G/G_0 \le 2/3$ can use upper scheme
 - $\Rightarrow 120\,\mathrm{ns}$ longer pulse
 - $\Rightarrow 240 \text{ extra bunches per train}$
- \bullet For $G/G_0 \leq 1/2$ can use lower scheme
 - need to modifiy first combiner ring
 - would need larger combiner ring with two pulses as baseline
 - $\Rightarrow 240 \, \mathrm{ns}$ longer pulse
 - $\Rightarrow 480 \text{ extra bunches per train}$
- For $G/G_0 \leq 3/8$ and $G/G_0 \leq 1/3$ similar solutions can be used
 - up to 1280 bunches at 1/3 of the charge

D. Schulte, Low energy running for CLIC, IWLC2010, October 2010 31

• Other options should be investigated

First Combiner Ring

- Original first combiner rings did not allow pulse that are twice as long as nominal
 - \Rightarrow need to double circumference
 - \Rightarrow loose one train at the beginning, one at the end of the pulse
- Larger ring should ease design issues

Drive Beam Decelerator

- Note the maximum deceleration in the decelerator does not change necessarily
 - gaps tend to be created in the first or second half of a superbucket
 - so tend to have ne fill time of consecutive bunches
- Developed small code to simulate the combination
 - to play with patterns
 - for phase stability studies

E. Adli

Beam Envelope Growth

E. Adli