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HCAL depth and material

to reduce leakage:
deeper calorimeter
denser calorimeter 
(more interaction lengths)

depth limited by feasible coil size:
larger coil with smaller B-field
larger B-field with smaller coil

depth limited by tracker size:
larger tracker better p-resolution 
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Calorimetric resolution driven by intrinsic resolution and by leakage

(talk is an update to the talk given at the CLIC 2009 Workshop at CERN)



HCAL absorber material 
 which material for the absorber?

 steel, tungsten, ... ?

 Tungsten
 expensive!
 more contained showers (compared to Fe) with the same 

HCAL geometrical depth  less leakage
 smaller shower diameter  better separation of showers 

(probably good for particle flow)

 final goal  good energy resolution with Particle Flow 
(Tracking+Calorimeters+Muon system)
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Energy reconstruction with neural network
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shorter HCAL more leakage  worse resolution

numbers denote HCAL 
length in units of 
interaction lengths

~40 λ

active:    5 mm scintillator
passive: steel, 2.5 mm G10

(information from fine granularity of calorimeter not used  traditional approach)
-variables describe shower shape and size and energy
-train neural network with pion energy

-interpret length in λ as ECAL+HCAL



Energy resolution in W calorimeters: 250 GeV pions

21/10/2010 IWLC2010, Peter Speckmayer 5

flat region reached earlier (shorter HCAL) than with steel

~40 λ

active:    5 mm scintillator
passive: tungsten, 2.5 mm G10



Energy resolution in W calorimeters: 60 GeV pions
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lower energy  flat region reached earlier 
(less interaction length needed to contain clusters)

~40 λ

active:    5 mm scintillator
passive: tungsten, 2.5 mm G10



Energy reconstruction with neural network
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~40 λ

resolution dominated by leakage

resolution dominated by intrinsic resolution

active:    5 mm scintillator
passive: steel,tungsten, 2.5 mm G10



Energy resolution in a long W-
calorimeter (>20 λ)
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active:    5 mm scintillator
passive: tungsten, 2.5 mm G10



Tail-catcher
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tail catchers: 0 λ, 0.5 λ, 1 λ, 5 λ
structure as in the HCAL. 
zero λ tail-catcher implies no active material after the coil

coil thickness: 2 λ
having some tail-catcher (0.5 λ) improves resolution slightly
effect of bigger tail-catcher is negligible

active:    5 mm scintillator
passive: tungsten, 2.5 mm G10



Tungsten HCAL
 Tungsten used in ECALs

 typically ~1λ deep
 No experience with tungsten HCALs

 ~4 - 9 λ deep

 simulation of tungsten not validated
 no MC/data comparisons
 no validation for high granularity

 Tungsten HCAL useful if significant performance 
improvement (jet energy resolution, improved particle ID) 
compared to steel HCAL
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Further reason for validation

 Time structure of signal broadened by n-content
 time stamping 

 (slow) n-content smears out energy deposits in calorimeters
 know time-structure of n-content to set requirements for time 

stamping
 used to separate physics signal from beam-induced 

background on a time basis

 dependent on  active material (e.g. scintillator, gas)
 measurements necessary
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Tungsten HCAL Prototype
What we have learned, what we will learn?

 Tungsten plate production process
 Machining of tungsten plates
 Test production of large thin plates (gluing)
 Feasibility of needed flatness

 Physics performance
 Verify simulations (resolution, shower shapes, ...)
 Include realistic noise levels (read-out, neutrons, ...)
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more about prototype

 see talk from E. van der Kraiij
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CLIC W-HCAL depth studies with Pandora PFA

 see talk by Angela Lucaci-Timoce
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Conclusions & Outlook
 From tungsten simulations:

 8-9 λ ’s ECAL+HCAL seems sufficient up to 300 GeV 
(pions)

 ~10-15 mm W absorber optimal
 tail catcher useful, but no dramatic improvement
 Particle Flow algorithm 

 studies in progress (A.Lucaci-Timoce)

 From prototype results:
 feed back MC/data comparions on prototype to Geant4-

team
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backup
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physics-list differences (Geant4)
simulations of pion showers in block of tungsten

tungsten, QGSP_BERT tungsten, QGSP_BERT_HP

Evisible/EMC

transition regions of models with HP (high precision neutron tracking) 
enabled much less energy deposit by ionization

which one can we trust more?
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Evisible/EMC

in QGSP_BERT more n produced, more n captured 
 ~8MeV of photons each  accounts for difference



lead, QGSP_BERT tungsten, QGSP_BERT_HP

similar widths of lead and tungsten, when 
HP is used

 “feeling” says: this is more trustworthy

lead simulations for hadrons 
are better validated
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Evisible/EMC
Evisible/EMC

physics-list differences (Geant4)
simulations of pion showers in block of lead/tungsten



Effect of physics list on predicted resolution
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5 mm scintillator, 2.5 mm G10

~10-15% improvement (at 40 GeV)

why: n are captured farther away from shower core 
 “halo” produced which reduces reconstruction performance. 
removing halo (with HP n tracking)

less energy deposited by ionization, but ... Improved resolution!

considerable effect
but: perfect readout assumed



Tail-catcher

21/10/2010 IWLC2010, Peter Speckmayer 20

coil thickness: 2 λ
zero λ tail-catcher implies no active material after the coil
having some tail-catcher (1 λ) improves resolution
effect of bigger tail-catcher is small

tungsten steel



Longitudinal shower size
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C. Grefe

95% contained energy → ~40 layers (~4.8 λ)

95%

12 mm tungsten + 5 mm Scint + 2.5 G10



Lateral shower size
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C. Grefe

95% contained energy → ~40 cm radius

95%

12 mm tungsten + 5 mm Scint + 2.5 G10



Longitudinal shower sizes: 
tungsten + micromegas
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J. Blaha

95%

11 mm tungsten + micromegas



Lateral shower sizes: 
tungsten + micromegas
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J. Blaha
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