Software compensation for the CALICE AHCAL

Marina Chadeeva ITEP, Moscow for the CALICE Collaboration

Marina Chadeeva, ITEP

Data and pion event selection

 $\pi^{\scriptscriptstyle -}$ and $\pi^{\scriptscriptstyle +}\,$ of 8 ÷ 80 GeV from test beam at CERN SPS in 2007

Marina Chadeeva, ITEP

CALICE AHCAL Prototype

- Fine-granular iron-scintillator calorimeter
- 7608 tiles in ~1 cubic meter (depth $\approx 4.5\lambda_{\tau}$)
- Non-compensating ($e/\pi > 1$)

For software compensation study:

- pions that start showering in HCAL are selected (track in ECAL)
- for methods with hit spectrum analysis, events with shower start at the beginning of HCAL are selected
- electromagnetic calibration coefficients are used to calculate deposited energy

Marina Chadeeva, ITEP

Software compensation approaches

Non-compensating calorimeter -> response depends on EM fraction in hadronic shower -> worse resolution for hadrons

High granularity allows two approaches: Local Global

Basis: higher energy density in EM component comparing to HAD **Implementation:** a weight applied to each cell depends on the energy density in the cell **Basis:** observables correlated with EM fraction value **Implementation:** a single weight for event energy is calculated from these observables

Both approaches successfully applied to the CALICE AHCAL:

- local method with individual cell weighting
- global method with hit spectrum shape analysis (in detail in this talk)
- global method with neural network

Software compensation: Local Method

- HCAL hit energy spectrum is divided by groups of cells according their energy density.
- Weights are applied to cells according to their energy, lower weight for cells with higher energy content

Marina Chadeeva, ITEP

Software compensation: Local Method

Weights are determined from data using minimization technique and applied to each individual cell.
Weight energy dependence is parametrized.

ΔE/E CALICE Preliminary 0.2 Energy resolution single weight energy dependent parametrization No prior knowledge of beam 0.15 energy necessary for application of the method 0.1 Improved linearity of response, within ~3% from 8 to 80 GeV 0.05 Fit: $a \lambda E \oplus b \oplus c \text{ GeV/E}$ -a = 61.3±0.1% b = 2.54±0.10% c = 0.000±0.041 [GeV] - a = 49.2±0.4% b = 2.34±0.12% c = 0.504±0.042 [GeV] Resolution improved by ~18% 10 20 30 40 50 60 70 80 beam Energy [GeV]

Software compensation: Global Method

Hit energy spectrum shapes are different for high and low detected response -> spectrum shape is related to the amount of EM fraction

 e^{lim} (e.g. 5.5 MIP - in the middle of the spectra crossing region) and C^{av} - probability to find a hit with less energy than average of the event spectrum

Marina Chadeeva, ITEP

Deposited energy vs. observables

Marina Chadeeva, ITEP

Relative resolution for pions

Before and after compensation

Comparison with MC (QGSP_BERT). The coefficients extracted from data are applied to MC (em calibration and e/π ratio).

Software compensation: Global Method with Neural Networks

Cluster finding in HCAL and TCMT to determine properties of the shower: total energy, volume, length, width, energy in TCMT, energy in last 5 HCAL layers

6 observables as input for NN NN trained with simulations

- No prior knowledge of beam energy needed for application
- For NN trained with FTF_BIC resolution improved by ~25% (~15% at 10 GeV, ~20% at 15 GeV)

Summary

- High granularity of the CALICE AHCAL allows the application of different software compensation methods based on both hit spectrum and cluster structure analysis.
- One local and two global methods were successfully applied to improve pion energy resolution for the CALICE AHCAL in the energy range from 8 to 80 GeV. The observed relative improvements are comparable and vary from 10% to 25%.
- Further optimization of compensation methods and implementation of improved calibration constants for the HCAL are expected to make possible a considerable additional improvement of the energy resolution.

Energy distributions for global compensation

Marina Chadeeva, ITEP

Global compensation: relative improvement

by 5% ÷ 20% for π^- (12 runs 10÷80 GeV) by 15% ÷ 20% for π^+ (12 runs 30÷80 GeV)

Marina Chadeeva, ITEP

Global compensation: data and MC The same mip2gev coefficients from em calibration and e/π ratio are applied to MC samples as to data.

Without compensation QGSP_BERT is in better coincidence with data than FTFP_BERT (FTF_BIC behavior is similar to that of FTFP_BERT). Both physics lists predict better resolution after compensation for higher energies. The correction procedure does not change the MC linearity behavior.

Marina Chadeeva, ITEP