Proposals for conceptual design of the CLIC DR RF system at 2 GHz

20/10/2010 A.Grudiev

Acknowledgements

E. Jensen W. Hofle K. Akai

Outline

- 1. Introduction
- 2. Low stored energy design option
- 3. High stored energy design options
 - 1. Normal conducting ARES-type cavity
 - 2. Superconducting elliptical calls cavity
- 4. Summary

CLIC DR parameters

Y. Papaphilippou

New DR parameters

The ring circumference was shortened after relaxing longitudinal parameters in order to reduce space-charge

** Using Bane approximation. Piwinski theory gives (310,4.4,6100)

"A la linac"-type rf system (low stored energy option)

Scaling of NLC DR RF cavity

From PAC 2001, Chicago AN RF CAVITY FOR THE NLC DAMPING RINGS R.A. Rimmer, et al., LBNL, Berkeley, CA 94720, USA

NLC DR RF cavity paramete	CLIC DR RF		
Frequency: f[GHz]	0.714	2	1
Shunt impedance: $R_g [M\Omega]$ (~ 1/Jf)	3	1.8	2.5
Unloaded Q-factor: Q_0 (~ 1/Jf)	25500	15400	21500
Aperture radius: r [mm] (~ 1/f)	31	11	22
Max. Gap voltage: V_g [MV] (~ 1/f ^{3/4})	0.5	0.23	0.39
Wall loss per cavity: V _g ²/2R _g [MW]	0.042	0.015	0.03
HOM (σ_z =3.3mm)			
HOM loss factor: k , [V/pC] (~ f)	1.1	3.08	1.54
Transverse HOM kick factor: k ^T t [V/pC/m] (~ f²)	39.4	309	77.3

From PAC 1995, Collective effects in the NLC DR designs T. Raubenheimer, et al.,

Number of cavities: $N = V_{rf}/V_a = 4.4/0.23 = 19.1 \sim 20 = 10 \times 2$ -cells cavities $V_a = V_{rf}/N = 4.4/20$ Gap voltage: = 0.22 MVTotal wall losses [MW] : $P_0 = V_{rf}^2/2NR = 4.4^2/(2*20*1.8)$ = 0.27 MW Peak beam SR power [MW]: $P_{b} = U_{0} * I_{b} = 4.2 * 1.3$ = 5.46 MW Matching condition: Total power lost in the cavities when the beam is in: $P_{in} = P_b + P_0$ = 5.73 MW Cavity coupling: $\beta = Q_0/Q_{ext} = P_{in}/P_0 = (P_b+P_0)/P_0$ = 21 External Q-factor: $Q_{ext} = Q_0/\beta = 15400/21$ = 733 Filling time: $t_f = Q_1/f = Q_{ext}/(1+1/\beta)/f = 733/(1+1/21)/2$ GHz = 350 ns

Klystron bandwidth: ∂f $\partial f \gg 1/t_f = 1 / 350 = 3 \text{ MHz}.$ AND $\partial f \gg 1/t_{gap} = 1 / (1402-156) = 0.8 \text{ MHz}; \text{ where } t_{gap} - \text{ time between the bunch trains}$

RF system total length: $10 \times 1 \text{ m} = 10 \text{ m}$

Alexej Grudiev, CLIC DR RF.

Alexej Grudiev, CLIC DR RF.

Alexej Grudiev, CLIC DR RF.

20 October 2010

Summary table for "a la linac"-type

Overall parameters		alternative		
Total rf power [MW]	6	3		
Total length [m]	10	5		
Number of HVPS	10	5		
Number of klystrons	10	5		
High voltage power supply (HVPS)				
Output voltage [kV]		60		
Output current [A]	20			
Voltage stability [%]	0.1			
Klystron				
Output power [kW]	6	00		
Efficiency [%]	50			
Bandwidth [MHz]	> 1%			
Gain [dB]	~40			

KEKB-type rf system (high stored energy option)

Beam cavity interaction, dV/V << 1

KEKB RF system

K. Akai, et. al, "THE LOW-LEVEL RF SYSTEM FOR KEKB", EPAC98

Table 1: RF-related machine parameters and RF operation parameters.

	1199	140	-
	LINC		545.
Energy [GeV]	3.5	8	.0
Current [A]	2.6	1	.1
Beam power [MW]	4.5	4	.0
Bunch length [mm]	4	4	4
RF frequency [MHz]	508.887	508	.887
Harmonic number	5120	51	20
Cavity type	ARES	SCC	ARES
Number of Cavities	20	8	12
Relative phase	i	10 degrees	
Total RF voltage [MV]	10	17.9	
R -Q [>/cav.]	14.8	93	14.8
QL £10 ⁴	3.0	7.0	3.0
Input fl	2.7	1	2.7
Voltage [MV/cav.]	0.5	1.5	0.5
Input power [kW/cav.]	375	250	340
Wall loss [kW/cav.]	154	1	154
Beam power [kW/cav.]	221	240	173
Number of Klystrons	10	8	6
Klystron power ^y [kW]	» 810	» 270	» 730

⁹ 7 % loss at waveguide system is included.

Figure 3: Transient response of the hybrid system in HER to a 5% gap.

 $dV/V = P_b T_b (1-T_b/T_{rev})\rho\omega/2V^2 \sim 1\%$ it is consistent with simulation presented in Fig 3 $d\phi_b = dV/V^*(1/tan\phi_s - tan\phi_s) \sim 3^\circ$ it is consistent with simulation presented in Fig 3 Dominated by direct cavity voltage phase modulation in KEKB case

THE ARES CAVITY FOR KEKB, Kageyama et al, APAC98

CLIC DR parameters for scaled ARES cavity

The incoming beam needs to be stable to

or

 $\sigma_{\varphi,in} < 0.4 \deg$ @ 2 GHz and $\sigma_{E,in}/E_{in} < 3.8 \times 10^{-4}$ (distributed timing reference)

 $\sigma_{\varphi,in} < 0.1 \deg @ 2 \text{ GHz and } \sigma_{E,in} / E_{in} < 5.4 \times 10^{-5} \text{ (outgoing pulses as timing reference)}$

Specs from RTML F. Stulle, CLIC meeting, 2010-06-04

Circumference: C [m] 420.56 Energy loss per turn: U₀ [MeV] 4.2 2 RF frequency: f_{rf} [GHz] 1 RF voltage: V_{rf} [MV] 4.9 4.4 Beam current I_h [A] 0.66 1.3 Train length T_h [ns] 2 x 156 156 Harmonic number: h 1402 2804 Synchronous phase : ϕ_{ς} [°] 59 73 Gap voltage: V_{σ} [MV] 0.3 - 0.50.18 - 0.3Wall loss total [MW] 1.2 - 2.1 0.9 - 1.6 Bunch phase spread for scaled ARES cavity: 0.7 - 0.4 15 - 9 **dφ**_b [°] (ρ_g =15 Ω) Factor missing to get the specs ~10 ~100 Specified bunch phase spread: $d\phi_h$ [°] 0.05 0.1

Assuming parameters of ARES cavity from nominal up to tested (150 - 450 kW) and scaled to 1 or 2 GHz

```
dV/V = -P_bT_b(1-n_{trains}T_b/T_{rev})\rho_g\omega/2V_gV
```

 $d\phi_b = dV/V(1/tan\phi_s-tan\phi_s)$

Dominated by cavity voltage modulation -> synchronous phase modulation

Solution 1: Modification of the scaled ARES cavity

 $\rho = V^2 / \omega (W_a + W_s)$; in ARES $W_s = 10W_a$ If we keep the size of the storage cavity the same as for 0.509 GHz when scaling to 1 or 2 GHz: $W_s = 10W_a^* (f/0.509)^3$ $\rho = 1/f^3$ In addition, Q-factor improves $\sim f^{1/2}$

Frequency: f[GHz]	0.509	1	2		
Normalized shunt impedance (linac): $\rho_g=R_g/Q [\Omega] (~1/f^3)$	15	1.9	0.23		
Unloaded Q-factor: Q ($\sim f^{1/2}$)	110000	156000	220000		
Aperture radius: r [mm] (~ 1/f)	80	40	20		
Max. Gap voltage: Vg [MV] (~ 1/f5/4)0.850.350.15Scaled to keep wall loss per cavity constant0.150.15					
Wall loss per cavity: [MW]	0.44	0.44	0.44		
Scaling of the gap voltage is done to keep heat load per					

cavity constant: $P = V_g^2/R_g g = V_g^2/\rho_g Q g => V_g^2/f^{5/4}$

- This implies that we go to higher order mode in storage cavity from TE015 to whisperinggallery modes like in the BOC-type pulse compressor.
- Wall loss per cavity increased dramatically what requires gap voltage reduction.

CLIC DR parameters for modified ARES cavity

The incoming beam needs to be stable to

 $\sigma_{\varphi,in} < 0.4 \deg$ @ 2 GHz and $\sigma_{E,in} / E_{in} < 3.8 \times 10^{-4}$ (distributed timing reference)

or $\sigma_{\varphi,in} < 0.1 \deg @ 2 \text{ GHz and } \sigma_{E,in}/E_{in} < 5.4 \times 10^{-5} \text{(outgoing pulses as timing reference)}$

Specs from RTML F. Stulle, CLIC meeting, 2010-06-04

Circumference: C [m]	420.56		
Energy loss per turn: U ₀ [MeV]	4.2		
RF frequency: f _{rf} [GHz]	1	2	
RF voltage: V _{rf} [MV]	4.9	4.4	
Beam current I _b [A]	0.66	1.3	
Train length T _b [ns]	2 x 156 156		
Harmonic number: h	1402 2804		
Synchronous phase : φ _s [°]	59	73	
Gap voltage: V _g [MV]	0.2 - 0.36	0.09 - 0.15	
Wall loss total [MW]	3.5 - 6 7.5 - 12.8		
Bunch phase spread for modified ARES cavities: $d\varphi_b$ [°]	0.1-0.07 0.5-0.3		
Specified bunch phase spread: dopb [°]	0.05	0.1	

Assuming parameters of ARES cavity in the range from nominal up to tested and modified to 1 or 2 GHz keeping the same storage cavity volume

Performance is almost within specs but the power loss in the cavities is big. It is acceptable for 1 GHz but probably too big for 2 GHz

Solution 2: Detuning rf frequency from bunch frequency

In the presence of linear phase shift of $d\phi_b$ over a period of time T_b :

 $f_{b} = f_{rf} - d\phi_{b}/2\pi T_{b};$ To compensate $d\phi_{b} = dV/V$ (1/tan ϕ_{s} - tan ϕ_{s}) = **1.7**° at 2 GHz, $\delta V/V = -1\%$, $\phi_{s} = 73°$, $df_{rf}/f_{rf} = -1.5e-5$ is needed, which is very small

BUT the associated voltage reduction $\delta V/V$ results in bucket reduction and consequently in bunch parameters modification. Radiation damping keeps $\sigma_{\rm E}$ =const for all bunches in the train so the bunch length varies along the train.

The limit from RTML is that RMS{ $\delta\sigma_z/\sigma_z$ } < 1%(F.Stulle)

 $\Delta E/\Delta z = \sigma_E/\sigma_z \Rightarrow \Delta E \sigma_z = \Delta z \sigma_E$ Variation gives $\delta \Delta E \sigma_z + \Delta E \delta \sigma_z = \delta \Delta z \sigma_E + \Delta z \delta \sigma_E$ Which results in $\delta \sigma_z / \sigma_z = \delta \Delta z / \Delta z - \delta \Delta E / \Delta E$

 $\Delta E^{2} \sim V(\cos \phi_{s} + (\phi_{s} - \pi/2) \sin \phi_{s})$ δ δΔE/ΔE = ½[δV/V+δφ_{s}/(tanφ_{s} + 1/(φ_{s} - \pi/2))]
δ δφ_{s} = - δV/V tanφ_{s} δΔE/ΔE = ½δV/V[1-1/(1+1/(tanφ_{s}(φ_{s} - \pi/2)))]
δ δV/V = -**1%**, φ_{s} = **73**° => δΔE/ΔE = -**17%** δ

Fig. 2.3: Bucket length $\phi_n - \phi_m$ versus synchronous phase ϕ_0 .

Reducing φ_s helps a lot

 $\delta\sigma_z/\sigma_z = \delta\Delta z/\Delta z - \delta\Delta E/\Delta E = -11\% + 17\% = 6\%$ (peak-to-peak)

Image from H. Damerau, PhD Thesis, 2005

Proposal for conceptual design at 2 GHz based on the ARES-type cavities

- 1. Fix the value of acceptable bunch length increase from first to the last bunch to $\delta\sigma_z/\sigma_z = 3\%$
- 2. This defines allowed voltage reduction $\delta V/V = -0.5\%$, which corresponds to $d\phi_b = dV/V$ (1/tan ϕ_s tan ϕ_s) = 0.85°, $\phi_s = 73°$
- 3. To assure this voltage reduction the total normalized shunt impedance: $\rho = -dV/V * 2V^2/(P_bT_b(1-n_{trains}T_bf_{rev}) \omega)$ = **20** Ω
- 4. Reducing φ_s helps a lot

Parameters of the proposed rf system at 2 GHz			
Gap voltage: V _g [MV]	0.15		
Normalized shunt impedance per cavity (linac): $\rho_g [\Omega]$	0.7		
Q-factor	~190000		
Number of cavities	30		
Total stored energy [J]	77		
Wall loss total [MW]	~5		
Average beam power [MW]	0.6		
Total length of the rf system [m]	~50		
Bunch phase spread: dф _b [º]	0.85		
Relative rf frequency detuning: df/f Required for compensation of $d\phi_b$	-0.75e-5		
Corresponding mean radius increase: dR=R*df/f [mm]	~0.4		

Possible layout of an RF station with ARES type cavities

Superconducting RF option

Making ARES-type cavity superconducting is probably possible but certainly beyond the present state-of-the-art in SC RF technology

Elliptical cavity is an option but it has relatively high normalized shunt impedance. Let's consider TESLA-like cell:

1276 mm

Frequency: f[GHz]	1.3	1	2
Normalized shunt impedance per cell (circuit): $\rho_g = R_g/Q [\Omega]$ (const)	58	58	58
Unloaded Q-factor: Q (~ 1/f ²)	5e9	8e9	2e9
Aperture radius: r [mm] (~ 1/f)	35	46	23
Max. gradient in CW: G [MV/m] Scaled to keep gradient constant	14	14	14
Max. gap voltage: V _g [MV]	1.6	2	1
Stored energy per gap: $V_g^2/2\rho_g\omega$ [J]	2.7	5.5	0.7

Parameters of SC rf system at 2 GHz	
Total stored energy: [J] Needed for dV/V = 0.5%	77
Gap stored energy: [J]	0.7
Number of gaps	110
Gap voltage: V _g [MV]	0.04
Normalized shunt impedance per gap (circuit): $\rho_g \left[\Omega \right]$	0.09
Q-factor	2e9
Wall loss total [W] at 2K	484
Total cryogenic power [MW] at 300K	~0.5
Average beam power [MW]	0.6
Total length of the rf system [m] Dependent on the # of cells per cavity	~22 for 5 cells

RF station layout for SC cavities

Comparison of 3 options

All 3 options seems to be feasible but have different issues summarized below

	"A la	linac"	ARES		SC	
Train length [ns]	156	312	156	312	156	312
Total stored energy [J]	0.	.3	77	154	77	154
Shunt impedance R [$M\Omega$]	3	6	1.9	0.95	20000	10000
Total rf power [MW]	6 ((3)	6	~12	0.6	1.2
Total length [m]	10	(5)	~50	~50	~20	~40
Klystron bandwidth [%]	>	>1 < 0.1		< 0.1		
Voltage modulation	Strong:No, or veryPhase + amplitudesmall phase		Could be stronger	No, or very small phase	Could be stronger	
Strong HOM damping	demon	strated	demonstrated		demonstrated in single cell	
Transverse impedance	Higl	nest	Lower		Lowest	
Cryogenic power [MW]	()	0		>0.5	
Main Challenge	Voltage m for tra comper Low eff	odulation nsient nsation, ficiency	Low efficiency Big size <mark>¢_s reduction wi</mark>		Low R/Q, Rf design both for fundamental and for HOM II help a lot here	