

Electron Cloud Instability Measurements at CESR-TA October 21, 2010 M. Billing

Participants

- Instability Measurements
 - M. Billing, G. Dugan*,
 R. Meller, M. Palmer,
 G. Ramirez, J. Sikora,
 K. Sonnad, H. Williams,
 CLASSE, Ithaca, NY
 - R. L. Holtzapple,
 California Polytechnic
 State University,
 San Luis Obispo, CA

- X-ray Beam Size Measurements
 - J. Alexander,
 - M. Cunningham,
 - N. Eggert, W. Hopkins,
 - B. Kreis, D. Peterson,
 - CLASSE, Ithaca, NY
 - J. Flanagan^{*},
 KEK, Japan

Provided slides for this talk

- Description of Measurement Techniques for Observing Unstable Motion
- Example of Typical Instability Observations
- X-ray Beam Size Observations
- Systematic Studies of Electron-cloud-related Instabilities
- Description of Measurement Techniques for Observing the Damped Motion of Bunches Within the Train
- Examples of Observations of Drive-damp Measurements

RF

Gate

Circuit

BPM Processor

Peak

Rectifier

Circuit

- Frequency spectra of individual bunches from single button BPM routed to spectrum analyzer (10 s averaging)
 - Sensitive to both V and H motion
 - Signal is gated on a single bunch
- Machine conditions (e.g.
 bunch currents, magnet & feedback settings) recorded _ before and after each spectrum
- Systematic checks:
 - Ruled out inter-modulation distortion in the BPM electronics
 - Betatron and head-tail lines moved as expected when vertical, horizontal, & synchrotron tunes were varied.

Amplifier 8

Attenuator

Switchyard

• Conditions: 2.1 GeV, ϵ_{H} =2.6 nm, ϵ_{V} =20 pm, α_{P} =6.8x10⁻³, σ_{Z} =10.8 mm, Q_{H}, Q_{V}, Q_{S} =14.57, 9.6, 0.065 30-45 bunch trains: 0.5-1 mA (0.8-1.6x10¹⁰)

Spectrum

Analyzer

EC-induced Beam Dynamics: General Observations

- Frequency spectra exhibit vertical m=+/- 1 head-tail (HT) lines
 - Some bunches in the train show peaks separated from $F_{\beta V}$ by F_{synch}
 - Amplitudes typically grows along the train.
- After 1st bunch where vertical HT lines appear above noise
 - We observe growth in the beam size, continuing to increase along train
- In some cases, 1st bunch in train exhibits a HT line (m=-1).
 - "Precursor" bunch ("clearing" bunch) eliminates m=-1 signal in 1st bunch
 - Without "precursor" bunch vertical beam size is larger for 1st bunch
- Following slides present
 - Details of these observations
 - Dependence on machine and beam parameters such as
 - Current
 - Number of bunches
 - Chromaticity
 - Synchrotron Tune, etc.

Bunch-by-bunch Power Spectrum: Run 166

Detail of Spectrum of Bunch 30: Run 166

Data set 00166-8733

Horizontal and Vertical Betatron Lines: Run 166

October 21, 2010

IWLC2010 - CERN, Geneva, Switzerland

Detailed Features of Horizontal and Vertical Lines

Lower frequency (~3 kHz) shoulder in the horizontal tune spectrum is attributable to known dependence of horizontal tune on the multibunch mode.

Bifurcation of the vertical tune spectrum (peak at ~ 1.5 kHz higher frequency), which starts to develop at the same bunch number as the head-tail lines, is not yet understood.

Vertical Head-tail Lines: Correlation with Cloud Density – Run 166

Cloud Density Comparisons

From tune shift data, run 33. Assumes 474 m of dipoles, equal vertical and horizontal β = 16 m.

From simulation

The average cloud density computed directly (but approximately) from the tune shifts agree relatively well with that from a cloud simulation which reproduces the measured tune shifts.

X-ray Beam Size Measurements

Cornell University Laboratory for Elementary-Particle Physics

1 Train, 45 Bunches, 1.0 mA/bunch: e.g. Coded Aperture (CA) & 0.08 Uniformly Redundant Array data fit (URA) for x-ray imaging being 0.07 Fresnel Zone Plate (FZP) used at CesrTA. Pseudo-random 0.06 pattern gives relatively flat arb observed on Linear Array spatial frequency response. 0.05 Litero 0.04 Analysis: utilize Point gnal 1.6.49 0.03 1.4.499 1.2.49 **Response Functions to** 0.02 1:09 0.40 fit for beam size 0.01 6440 4040 & centroid position (trajectory) 5 10 15 2025 30 35 Pixe1 Simulated detector response for various beam sizes at Example of single-shot data CesrTA (single-bunch, single-turn) 0,8 0.7 400.6 position 0,5 30 0.4 0.3 20Microne 0,2 10 0,1 Position on detector plane 10 Measured slow-scan detector image (red) at CesrTA, used to -20 0 50100 150 200 250validate simulation (blue) Turn

Example of turn-by-turn data (one bunch out of train)

Bunch]

Vertical Beam Size: 45 Bunch Train

Conditions

Observation Substantial V motion beginning at ~ bunch 25 Show increase in σ_V by bunch 20-25

FZP has limited accuracy when σ_V increases

EC-Induced Emittance Growth with Strong Feedback for Coupled-bunch Dipole Modes

1 Train, 45 Bunches, 0.5 mA/bunch

Measure Bunch-by-Bunch Beam Size

- Beam size enhanced at head and tail of train Source of blow-up at head appears to be due to a long lifetime component of the cloud.
 Bunch lifetime of smallest bunches consistent with observed single bunch lifetimes during LET (Touschek-limited) and with relative bunch sizes.
- Beam size measured around bunch 5 corresponds to $\epsilon_y \sim 20 \text{pm-rad}$ [σ_y =11.0±0.2 µm, β_{source} =5.8m]
- Large vertical dipole motion from operating with low feedback levels during the instability measurement period sweeps the beam on & off of the Linear Array → confuses the analysis

Very recent results from J. Flannagan show that it is possible analyze the turn-by-turn data by selecting the turns when the the beam signal is entirely on the detector.

Bunch Number

Precursor Bunch Dependence I

Study of Vertical & Horizontal Chromaticity Dependence

October 21, 2010

Study of Current Dependence I

Study of Current Dependence II

Bunch Number Dependence

HT Line - Cloud Density Correlation: 45 Bunches

Synchrotron Tune & Bunch Length Dependence

30

Vertical Emittance Dependence: 30 Bunches, 0.75 mA/b

Low vertical emittance (~20 pm)

Increased vertical emittance (~300 pm, estimate, not from measured beam size)

No significant difference for instability

Vertical Emitance Dependence: 45 Bunches, 0.75 mA/b

Run 156: 45 bunches Low vertical emittance (~20 pm)

Run 159: Increased vertical emittance (~300 pm, estimate, not from measured beam size)

Instability starts earlier, but grows more slowly for higher ε_V

Vertical Feeback Dependence

Run 129: Positron feedback (H,V,L) = (-400, -400, 0)Nominal current/bunch =0.738 mA

Run 126: Positron feedback (H, V, L) = (-400, 0, 0)Nominal current/bunch = 0.723 mA

Dipole vertical feedback does not change the instability threshold for the head-tail modes

Full Spectra: Species Comparison

Single Bunch Current Dependence

- Bunch-by-bunch damping rate measurements:
 - m = 0 (dipole) mode:
 - Drive a single bunch via Transverse Feedback System external modulator with a pulse
 - Observe the m=0 mode from a button BPM, gated on the same bunch
 - Measure the damping rate of the m=0 line's power after the drive is turned off
 - m = +/-1 head tail modes
 - CW drive of the RF cavity phase larger amplitude excitation
 - Then use transverse drive-damp excitation, as for m=0 mode
- A number of measurements were made to investigate the systematics of this technique
- Results will be shown for a couple of runs in which 30 bunch trains with currents of about 0.75 mA/bunch were studied. (For these conditions, the self-excited HT lines start around bunch 15).

- Bunch-by-bunch damping rate measurements:
 - Basic idea
 - Drive single bunch via Transverse Feedback System external modulator with a pulse
 - Observe spectral line from a button BPM, gated on the same bunch
 - m = 0 (dipole) mode:
 - Measure the damping rate of the m=0 line's power after the drive is turned off
 - m = +/-1 (head tail) modes
 - Apply CW drive to the RF cavity phase larger amplitude excitation
 - Then use transverse drive-damp excitation, as for m=0 mode
- Number of measurements made to investigate systematics of this technique
- Results for a couple of runs
 - 30 bunch trains
 - Currents of 0.75 mA/bunch
 - For these conditions, the self-excited HT lines start around bunch 15

m = 0 Vertical Betatron Line Grow-Damp Measurement

m = -1 HT Line Grow-damp Measurement

Conclusions

- In single-bunch frequency spectra of multi-bunch positron trains
 - For some of the bunches within train
 - Observed m=+/- 1 head-tail (HT) lines, separated from $F_{\beta V}$ by +/- F_{Synch}
- Onset of HT lines
 - 30 bunch train (0.75 mA/bunch)
 - Occurs at cloud density (near the beam) ~ 9x10¹¹/m⁻³ (rough agreement with simulation)
 - Depends on the vertical chromaticity, beam current & number of bunches
 - Weak dependence on F_{Synch} , σ_V , & vertical feedback
- Betatron lines
 - Exhibit structure varying along train
 - Power for $F_{\beta V}$ line grows along train & has structure not yet understood.
- For 45 bunch train
 - HT lines onset ~ $11-12x10^{11}/m^{-3}$
 - Maximum amplitude occurs around bunch 30-35
 - Amplitude of line is reduced for later bunches

Conclusions

- 1st bunch in the train can exhibit head-tail (HT) line (m=-1 only)
 - Presence of "precursor" bunch eliminates its m=-1 signal of 1st bunch
 - Also leads to onset of HT lines at later bunch in train
 - Implies there is significant cloud density near beam lasting \geq a few μ sec
 - RFA measurements & simulations indicate possible "trapped" cloud in quadrupoles and wigglers
- Strong dependence of HT line structure observed
 - For last bunch in 30 positron bunch train
 - As function of the current in that bunch
- Electron trains
 - In identical conditions, HT lines also appear
 - Onset is later in the train; develops more slowly than for positrons
- Initial measurements of damping rates of single bunches in 30 bunch train. Future => "Effective electron cloud impedance"
- Both sets of measurements: Need more checks for systematics

Backup slides

Horizontal and Vertical Tunes: Simulation

Bunch currents: Data set 33

This POSINST simulation was done for a slightly different data set. The standard set of cloud model parameters, validated in previous tune shift studies, was used. Tunes were computed from field gradients. (Vertical gradients need better macro-particle statistics).

Study of Repeatibility of H-T Lines

October 21, 2010

IWLC2010 - CERN, Geneva, Switzerland

Precursor Bunch Dependence II

Species Dependence

Ringwide avg vacuum ~0.6 nTorr

Run 147 V Chromaticity = 1.155 H Chromaticity = 1.33 Nominal current/bunch = 0.735 mA Positrons

Cornell University Laboratory for Elementary-Particle Physics HT m = +1 Line Appearance at Bunch 21

IWLC2010 - CERN, Geneva, Switzerland

Ratio of Betatron Power to HT-line Power (Vertical)

October 21, 2010

Vertical Betatron Line for Bunch 30: 0.25 mA Bunch vs 1.25 mA Bunch

EC-Induced Emittance Growth with Strong Feedback for Coupled-bunch Dipole Modes

1 Train, 45 Bunches, 0.5 mA/bunch

