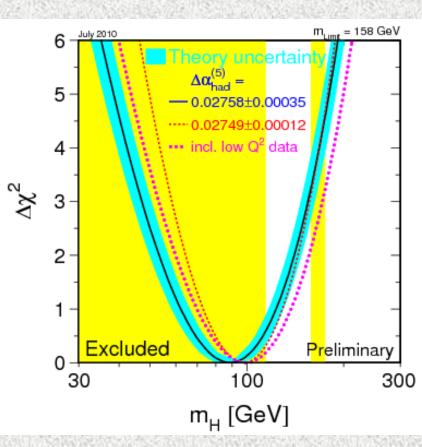
An Experimentalist's Appeal to Machine Colleagues Motivated by Theoretical Studies

Basic considerations on LC lumi § energy needs (up to 3 TeV)

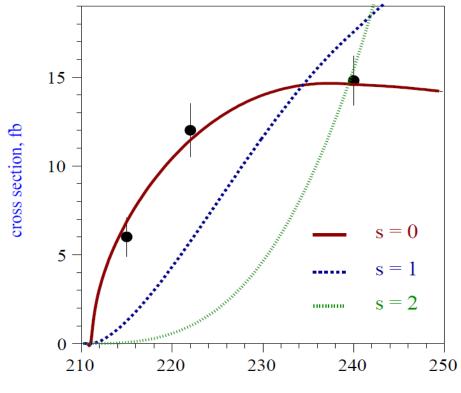
Jim Brau October 19, 2010


Acknowledgements: Konrad Elsener, JoAnne Hewett, John Jaros, Akiya Miyamoto, Francois Richard, Tom Rizzo, Marcel Stanitzki, Mark Thomson

Understanding Matter, Energy, Space and Time: the Case for the Linear Collider

- More than 2700 scientists signed 2003 statement, expressing the world-wide consensus[¶] for the linear collider:
 - Understanding the Higgs boson
 - New discoveries beyond the standard model
 - The benefit of precision measurements and the interplay of LHC and LC

The Standard Model Higgs


- Decades of experimentation have established the Standard Model, requiring a light Higgs Boson
- Standard Model describes
 ElectroWeak observations
 - Mass of gauge bosons requires explanation within the TeV mass scale
 - Higgs Mechanism
 - Minimal solution

Motivation for Linear Collider

- Revolutionary New Physics expected at O(TeV) scale
- LHC has power to initiate discovery of this New Physics, but detailed measurements limited compared to LC
- Linear Collider offers added discoveries AND precise, model independent measurements
 - Follows established, effective traditions of the field
 - eg. SppS discovered the Z boson, LEP and SLC established its properties in detail
 - Operating at $\sqrt{s} = m_Z$ (& scanning the resonance)
 - SPEAR discovered J/ $\Psi, \, \Psi', \, \text{D's}, \, \tau$
 - Other examples of electron/hadron machine synergy
- <u>Precision</u> constrains possible explanations, and points the way to deeper understanding

Higgs threshold spin analysis

√s, GeV

hep-ph/0302113 Dova, Garcia-Abia and Lohmann

J. Brau Geneva IWLC Oct 19, 2010

20 fb⁻¹ at each energy point

This is an example of the need for good low energy luminosity

Failings of the Standard Model

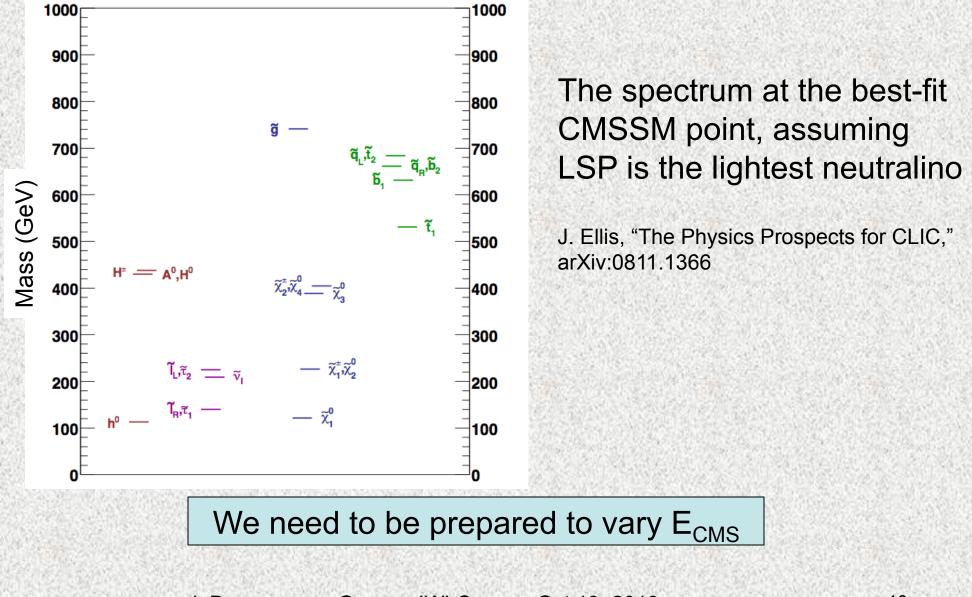
- A light Higgs boson, or its substitute, appears to be needed to explain decades of accumulated experimental data
- Nevertheless, there are also strongly motivated reasons to expect more on the TeV energy scale
 - What resolves the *Hierarchy Problem*?
 - Quantum corrections from loops of particles should naturally drive the Higgs mass to high mass scales, unless New Physics cuts off the corrections

Quigg, arXiv:0905.3187

New discoveries beyond the standard model

- While the standard model with the simplest Higgs boson agrees well with all observations, there are compelling reasons to expect additional new physics
- There are at least two disparate energy scales:
 - the Planck scale at about 10¹⁹ GeV
 - the electroweak scale at a few hundred GeV
- Also, the strengths of the strong, electromagnetic and weak forces become similar at about 10¹⁶ GeV suggesting the possibility of grand unification
- These features suggest <u>new physics at TeV scale</u>
 - Candidates: SUSY, extra dimensions,
 - other new particles, ...

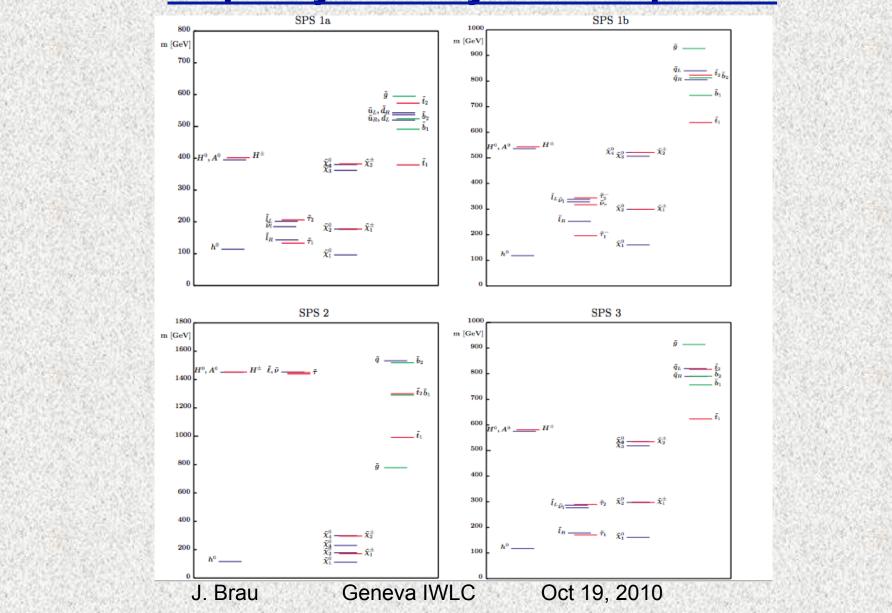
Supersymmetry


- One of the best motivated theories beyond the Standard Model
- Elegant, unified description of fermions and bosons
 - Matter and forces
 - Could include gravity
 - Predicted by string theory (good or bad?)
- Stabilizes the Higgs mass to the expected low values anticipated by experiments (electroweak parameters), if sparticle masses are O(TeV).
- Every known particle paired with

yet undiscovered super-partner, and more

Minimal Supersymmetry

- Light Higgs boson consistent with indirect measurements
- Natural unification of forces
- Explains Electroweak Symmetry Breaking
- Offers good dark matter candidate
- Many new particles
 - Five Higgs states (h^0 , H^0 , A^0 , H^+ , H^-)
 - Superpartners for every known standard model particle
- If Nature has chosen this structure, it will be very difficult to find all of these at the LHC
 - Need linear collider to complete discoveries


Possible Supersymmetry Mass Spectrum

J. Brau Geneva IWLC Oct 19, 2010

10

<u>A few candidate</u> Supersymmetry Mass Spectra

11

The benefit of precision measurements and the interplay of LHC and LC

- Two distinct/complementary paths to understanding of the structure of matter, space and time.
 - Direct discovery of new phenomena with operating at the energy scale of the new particles.
 - Inference of new physics through the precision measurement of phenomena at lower energy
- Historical record of these two paths working together to make more complete understanding
 - e⁺e⁻ pointed to top quark, which Tevatron discovered
 - Precision data from both for current Higgs prediction
 - Z discovered at h-coll, precision understanding e⁺e⁻
 - e+e- discoveries of charm, tau, and the gluon

ILC Scope and the RDR

ILCSC "scope document" specifies the requirements, including emphasis on importance of variable energy operation, with good luminosity performance

•Top could be special messenger; 350 GeV scan!

•Polarization very powerful probe!

RDR vs ILC Physics Goals

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

The RDR Design meets these "requirements," including the recent update and clarifications of the reconvened ILCSC Parameters group!

7-Feb-07 GDE/ACFA Closing Beijing

Global Design Effort

Oct 19, 2010

ilr

IIL.

13

ILC Design Evolution

- Reference Design Report (RDR) 2007
 - First detailed technical snapshot, defining in detail the technical parameters and components to guide the development of the worldwide R&D program
- SB2009
 - Proposed set of changes to the baseline aimed at optimizing ILC design for cost, performance and risk.
 - Physics impact studied and commented on by Physics and Detectors Study Group*
- New ILC Design and Parameters
 - Response to study group's reaction to reduced low energy luminosity – a modified design with new parameters

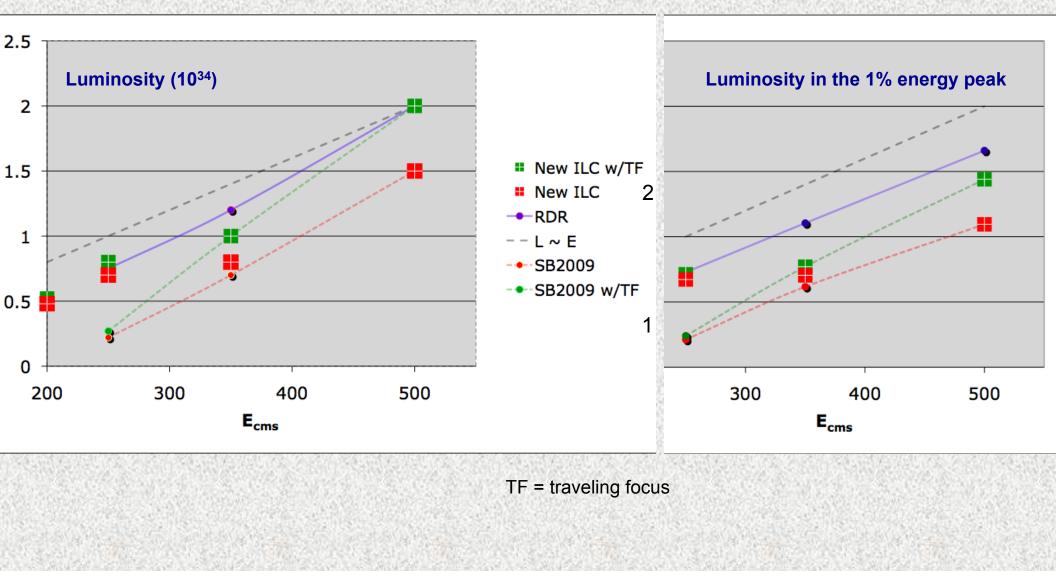
* T. Barklow, M. Berggren, J. Brau, K. Buesser, K. Fujii, N. Graf, J. Hewett, T. Markiewicz, T. Maruyama, D. Miller, A. Miyamoto, Y. Okada, M. Thomson, G. Weiglein
 J. Brau
 Geneva IWLC
 Oct 19, 2010

14

Reference Desian Repol

Summary report of the first meeting on Accelerator Design & Integration

> Ewan Paterson (SLAC) Marc Ross (FNAL) Nick Walker (DESY) Akira Yamamoto (KEK)


Editors:

ILC-EDMS ID: D*879845

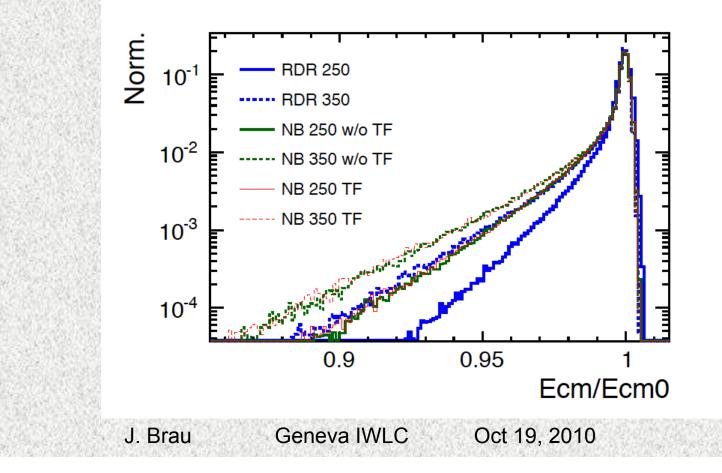
28-29th May, DESY

17th June 2009

Recently Updated ILC Machine Parameters

Physics and Detector Studies of New ILC Parameters

Effects which have been studied

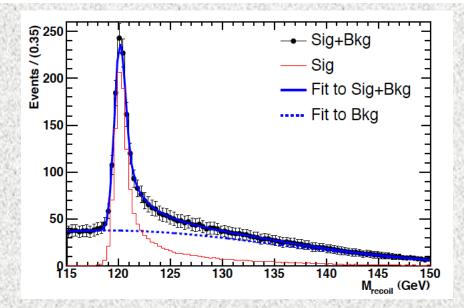

- Luminosity at low E_{cms}
- Effective luminosity due to Beamstrahlung losses
- Machine backgrounds

Processes to assess impact

- $e^+e^- \rightarrow Z h \rightarrow \mu^+ \mu^-$ Higgs
 - Higgs mass
 - Higgs cross section
 - Higgs branching ratios see talk at 1630 today, Hiroaki Ono
- Stau detection (forward electron vetoes)
- Low mass SUSY scenarios study
 - Snowmass SM2 benchmark
 - (m₀ = 100 GeV, m_{1/2} = 250 GeV, tan β = 10, A₀ = 0, and sign μ = +) - similar to SPS1a point

Higgs Mass and Cross Section

- Higgs measurements are best done at E_{cm}=250 GeV
- New Study of Higgs Recoil Mass compares new machine parameters with RDR, and operation @ 350 GeV - Hegne Li


Hengne Li

Higgs Mass and Cross Section

	Beam Par	$\mathcal{L}_{\mathrm{in}}$	$_{\rm t}~({\rm fb}^{-1})$	ϵ	S/B	$M_H (\text{GeV})$	σ (fb) $(\delta\sigma/\sigma)$
	RDR 250		188	55%	62%	120.001 ± 0.043	11.63 ± 0.45 (3.9%)
_	RDR 350		300	51%	92%	120.010 ± 0.087	7.13 ± 0.28 (4.0%)
	NB w/o TF 250 $$		175	61%	62%	120.002 ± 0.032	$11.67 \pm 0.42 \ (3.6\%)$
	NB w/o TF 350		200	52%			$7.09 \pm 0.35 \; (4.9\%)$
	NB w/ TF 250	\triangleright	200	63%	59%	120.002 ± 0.029	11.68 ± 0.40 (3.4%)
	NB w/ TF 350		250	51%	89%	120.005 ± 0.093	7.09 ± 0.31 (4.4%)

Coupling precision (cross section) better with new parameters than RDR

Higgs precision improvements: $\delta M: 43 \text{ MeV} \rightarrow 29 \text{ MeV} (\text{wTF})$ $\delta \sigma: 3.9\% \rightarrow 3.4\% (\text{wTF})$

Geneva IWLC

Oct 19, 2010

Low mass SUSY scenarios study

- Study of Snowmass SM2 point (~ SPS1a point)
 - hep-ex/0211002v1, P. Grannis

 $(m_0 = 100 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, \tan \beta = 10, A_0 = 0, \text{ and } \operatorname{sign} \mu = +).$

	М	Final state	(BR(%))			
\tilde{e}_R	143	$\widetilde{\chi}_1^{\ 0}e\ (100)$	((, *)))			
\tilde{e}_L	202	$\widetilde{\chi}_1^0 e$ (45)	$\widetilde{\chi}_1^{\pm} \nu_e \ (34)$	$\widetilde{\chi}_2^{\ 0} e \ (20)$		
$\widetilde{\mu}_R$	143	$\tilde{\chi}_{1}^{0}\mu$ (100)				
$\widetilde{\mu}_L \ \widetilde{ au}_1$	202	$\widetilde{\chi}_1^{\ 0}\mu$ (45)	$\widetilde{\chi}_1^{\ \pm} \nu_\mu \ (34)$	$\widetilde{\chi}_2^{\ 0}\mu$ (20)		
$\widetilde{ au}_1$	135	$\widetilde{\chi}_1^{\ 0} \tau \ (100)$				
$\widetilde{ au}_2$	206	$\frac{\widetilde{\chi}_1^0 \tau \ (49)}{\widetilde{\chi}_1^0 \nu_e \ (85)}$	$\frac{\widetilde{\chi}_1^- \nu_\tau (32)}{\widetilde{\chi}_1^\pm e^\mp (11)}$	$\frac{\widetilde{\chi}_2^{\ 0}\tau\ (19)}{\widetilde{\chi}_2^{\ 0}\nu_e\ (4)}$		
$\widetilde{\nu}_e$	186			$\widetilde{\chi}_2^{\ 0} \nu_e \ (4)$		
$\widetilde{ u}_{\mu}$ $\widetilde{ u}_{ au}$	186	$\widetilde{\chi}_1^{\ 0} \nu_\mu \ (85)$	$\widetilde{\chi}_1^{\pm} \mu^{\mp} (11)$	$\widetilde{\chi}_2^{\ 0} \nu_\mu \ (4)$		
$\widetilde{ u}_{ au}$	185	$\widetilde{\chi}_1^{\ 0} \nu_{\tau} \ (86)$	$\widetilde{\chi}_1^{\ \pm} \tau^{\mp} \ (10)$	$\widetilde{\chi}_2^{\ 0} \nu_{\tau} \ (4)$		
$\widetilde{\chi}_1^0$	96	stable				
$\widetilde{\chi}_2^0$	175	$\widetilde{\tau}_1 \tau$ (83)	$\tilde{e}_{R}e$ (8)	$\widetilde{\mu}_R \mu$ (8)	_	
$\widetilde{\chi}_3^{\ 0}$	343	$\widetilde{\chi}_1^{\ \pm} W^{\mp} (59)$	$\widetilde{\chi}_2^{\ 0}Z$ (21)	$\widetilde{\chi}_1^{\ 0}Z$ (12)	$\widetilde{\chi}_1^{\ 0}h$ (2)	~
$\widetilde{\chi}_4^0$	364	$\widetilde{\chi}_1^{\ \pm} W^{\mp} (52)$	$\widetilde{\nu}\nu$ (17)	$\widetilde{\tau}_2 \tau$ (3)	$\widetilde{\chi}_{1,2}Z$ (4)	$\ell_R \ell$ (6)
$ \begin{array}{c} \widetilde{\chi}_{1}^{\ 0} \\ \widetilde{\chi}_{2}^{\ 0} \\ \widetilde{\chi}_{3}^{\ 0} \\ \widetilde{\chi}_{4}^{\ 0} \\ \end{array} \\ \overline{\widetilde{\chi}_{1}}^{\pm} \\ \widetilde{\chi}_{2}^{\pm} \end{array} $	175	$\widetilde{\tau}_1 \tau$ (97)	$\widetilde{\chi}_1^{\ 0} q \overline{q} \ (2)$	$\widetilde{\chi}_1^{\ 0} \ell \nu \ (1.2)$		
$\widetilde{\chi}_2^{\pm}$	364	$\widetilde{\chi}_2^{\ 0}W$ (29)	$\widetilde{\chi}_1^{\pm} Z \ (24)$	$\widetilde{\ell} \nu_{\ell} \ (18)$	$\widetilde{\chi}_1^{\ \pm} h \ (15)$	$\widetilde{\nu}_{\ell}\ell$ (8)

J. Brau

Geneva IWLC Oct 19, 2010

Low mass SUSY scenarios run allocations

Beams	Energy	Pol.	$\int \mathcal{L} dt$	$[\int \mathcal{L} dt]_{equiv}$	Comments
e^+e^-	500	L/R	335	335	Sit at top energy for sparticle masses
e^+e^-	M_Z	L/R	10	45	Calibrate with Z 's
e^+e^-	270	L/R	100	185	Scan $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ threshold (L pol.)
					Scan $\tilde{\tau}_1 \tilde{\tau}_1$ threshold (R pol.)
e^+e^-	285	R	50	85	Scan $\widetilde{\mu}_R^+$ $\widetilde{\mu}_R^-$ threshold
e^+e^-	350	L/R	40	60	Scan $t\overline{t}$ threshold
					Scan $\tilde{e}_R \tilde{e}_L$ threshold (L & R pol.)
					Scan $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ threshold (L pol.)
e^+e^-	410	L	60	75	Scan $\tilde{\tau}_2 \ \tilde{\tau}_2$ threshold
					Scan $\widetilde{\mu}_L^+$ $\widetilde{\mu}_L^-$ threshold
e^+e^-	580	L/R	90	120	Sit above $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$ threshold for $\tilde{\chi}_2^{\pm}$ mass
e^-e^-	285	$\mathbf{R}\mathbf{R}$	10	95	Scan with e^-e^- collisions for \tilde{e}_R mass

sparticle	δM	δM	δM	spar
	end point	scan	combined	8
\widetilde{e}_R	0.19	0.02	0.02	î
\widetilde{e}_L	0.27	0.30	0.20	Î λ
$\widetilde{\mu}_R$	0.08	0.13	0.07	$\hat{\mathbf{x}}$
$\widetilde{\mu}_L$	0.70	0.76	0.51	$\hat{\mathbf{x}}$
$\widetilde{ au}_1$	$\sim 1-2$	0.64	0.64	$\hat{\mathbf{x}}$
$\widetilde{\mu}_L \ \widetilde{ au}_1 \ \widetilde{ au}_2$	_	1.1	1.1	x x x x x x x x x x x x x
$\widetilde{ u}_e$	~ 1	_	~ 1	$ $ $\tilde{\tilde{x}}$
$\widetilde{ u}_{e} \ \widetilde{ u}_{\mu}$	7?	_	7?	
경영관성		J	Brau	Ger

sparticle	δM	δM	δM
	end point	scan	combined
$\widetilde{\nu}_{ au}$	_	_	_
$\widetilde{ u}_{ au} \ \widetilde{\chi}_{1}^{\ 0} \ \widetilde{\chi}_{2}^{\ 0} \ \widetilde{\chi}_{3}^{\ 0} \ \widetilde{\chi}_{4}^{\ \pm} \ \widetilde{\chi}_{1}^{\ \pm} \ \widetilde{\chi}_{2}^{\ \pm}$	0.07	_	0.07
${\widetilde \chi}_2^{\ 0}$	$\sim 1-2$	0.12	0.12
${\widetilde \chi}_3^{\ 0}$	8.5	_	8.5
${\widetilde \chi}_4^{\ 0}$	_	_	_
$\widetilde{\chi}_{1}^{\pm}$	$\sim 1-2$	0.18	0.18
$\widetilde{\chi_2}^{\pm}$	4	-	4
Geneva	IWLC	0	ct 19, 2010

hep-ex/0211002v1, P. Grannis

1000 fb⁻¹ equivalent luminosity (scaled by L ~ E) required to achieve physics program

20

Low mass SUSY scenarios run allocations

Beams	Energy	Pol.	$\int \mathcal{L} dt$	$[\int \mathcal{L} dt]_{\text{equiv}}$	Comments
e^+e^-	500	L/R	335	335	Sit at top energy for sparticle masses
e^+e^-	M_Z	L/R	10	45	Calibrate with Z 's
e^+e^-	270	L/R	100	185	Scan $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ threshold (L pol.)
					Scan $\tilde{\tau}_1 \tilde{\tau}_1$ threshold (R pol.)
e^+e^-	285	R	50	85	Scan $\tilde{\mu}_R^+ \tilde{\mu}_R^-$ threshold
e^+e^-	(350)	L/R	40	60	Scan $t\bar{t}$ threshold
					Scan $\tilde{e}_R \tilde{e}_L$ threshold (L & R pol.)
					Scan $\widetilde{\chi}_1^+$ $\widetilde{\chi}_1^-$ threshold (L pol.)
e^+e^-	410	L	60	75	Scan $\tilde{\tau}_2 \tilde{\tau}_2$ threshold
					Scan $\widetilde{\mu}_L^+$ $\widetilde{\mu}_L^-$ threshold
e^+e^-	580	L/R	90	120	Sit above $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$ threshold for $\tilde{\chi}_2^{\pm}$ mass
e^-e^-	285	\mathbf{RR}	10	95	Scan with e^-e^- collisions for \tilde{e}_R mass

sparticle	δM	δM	δM	st
	end point	scan	combined	8
$ ilde{e}_R$	0.19	0.02	0.02	8
$ ilde{e}_L$	0.27	0.30	0.20	8
$\widetilde{\mu}_R$	0.08	0.13	0.07	
$\widetilde{\mu}_L$	0.70	0.76	0.51	
$\widetilde{ au}_1$	$\sim 1-2$	0.64	0.64	8
$egin{array}{c} \widetilde{\mu}_R \ \widetilde{\mu}_L \ \widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_e \ \widetilde{ u}_\mu \end{array}$	_	1.1	1.1	8
$\widetilde{\nu}_e$	~ 1	_	~ 1	
$\widetilde{\nu}_{\mu}$	7?	_	7?	- Saura
		J	Brau	Ge

sparticle	δM	δM	δM
	end point	scan	combined
$\widetilde{ u}_{ au}$	_	_	_
$\widetilde{ u}_{ au} \ \widetilde{\chi}_{1}^{\ 0} \ \widetilde{\chi}_{2}^{\ 0} \ \widetilde{\chi}_{3}^{\ 0} \ \widetilde{\chi}_{4}^{\ \pm} \ \widetilde{\chi}_{1}^{\ \pm} \ \widetilde{\chi}_{2}^{\ 0} \ \widetilde{\chi}_{2}^{\ 0} \ \widetilde{\chi}_{4}^{\ \pm} \ \widetilde{\chi}_{1}^{\ \pm} \ \widetilde{\chi}_{2}^{\ \pm}$	0.07	_	0.07
${\widetilde \chi}_2^{\ 0}$	$\sim 1-2$	0.12	0.12
${\widetilde \chi}_3^{\ 0}$	8.5	_	8.5
${\widetilde \chi}_4^{\ 0}$	_	_	_
${\widetilde{\chi}_1}^\pm$	$\sim 1-2$	0.18	0.18
${\widetilde \chi_2}^\pm$	4	_	4

hep-ex/0211002v1, P. Grannis

1000 fb⁻¹ equivalent luminosity (scaled by L ~ E) required to achieve physics program

One of Many Possible Scenarios for CLIC Operation

Model

 $m_{1/2}$

 m_0

 $tan \beta$ sign(μ)

 $\frac{m_t}{Masses}$

 $\mu(m_Z)$

h H

A H[±]

 χ

 χ_2

 χ_3

 $\chi_4 \chi_1^{\pm} \chi_1^{\pm} \chi_2^{\pm}$

 \tilde{q}

 e_L, μ_L

 e_R, μ_R

 ν_e, ν_μ

 τ_1

 τ_2

 ν_{τ}

 u_L, c_L

 u_R, c_R

 d_L, s_L

 d_R, s_R

 t_1

 t_2

 b_1

 b_{2}

K' 1300

1001

46

175

1420

123

1161 1153

 $\frac{1164}{554}$

1064

1430

1437

1064 1435 2820

1324

1109

1315

896

1251

1239

2722

2627

2723

2615

2095

2366

2297

2349

J. Brau

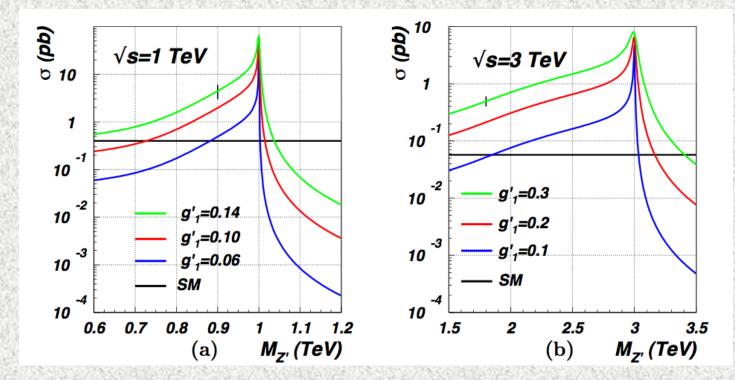
Energy	L (ab ⁻¹)	Р	Comments		
3.0	2.0	-	Determine kin. Endpoints + Higgs		
2.7	0.3	+0.8	Scan μ_R and e_R		
2.5	0.3	-0.8	Scan χ^+ and τ_1		
2.5	0.4	+0.8	Scan μ_R and e_R		
2.2	0.7	-0.8	Scan χ^+ , τ_1 , μ_R and e_R		
2.0	0.5	-0.8	Scan τ_1		
3.0	1.0	-0.8/+0.8	+0.8 Study SUSY processes with pol.		
		Particle Mass Accuracy (GeV) χ^{\pm}_{1} ± 4.3			
M Batta	aglia and	$\mu_R^{\pm} \pm 6.2$			
and the second		$\begin{array}{ccc} & & & & \\ \tau^{\pm}_{1} & \pm 6.7 \\ \hline & & \chi^{0}_{1} & \pm 4.0 \end{array}$			

(also studied Minimal Universal Extra Dimensions (MUED) Benchmark Point)

Note-polarization plays important role in signal or S/B enhancement

Geneva IWLC Oct 19, 2010

Other New Physics At CLIC

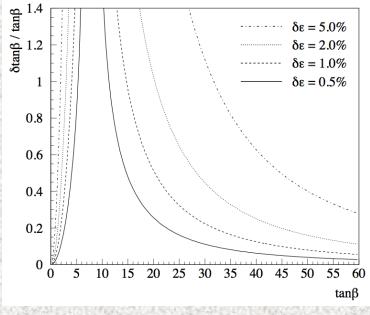

- Other new physics at CLIC could demand running at variable energies
 - New Heavy Gauge Bosons (Z',W')
 - Extended Higgs Sector (eg. Charged Higgs)
 - Extra Dimensions
 - Universal Extra Dimensions
 - Fourth generation of fermions
 - Other known possibilities, or the unexpected

Low-energy extension of SM: Z'

minimal B–L lowenergy extension of SM

 $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$

Extra gauge boson, the Z'


With a known value for M $_{Z'}$ (e.g., from LHC), one could extract g_1' from a line shape fit of the cross section at a LC.

L. Basso, A. Belyaev, S. Moretti and G. M. Pruna arXiv:0903.4777

We need to be prepared to vary E_{CMS}

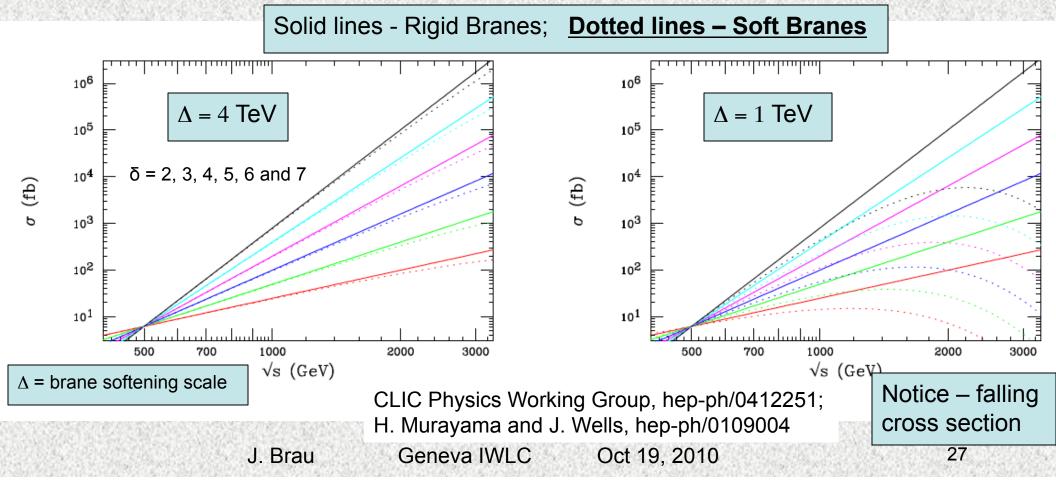
Extended Higgs Sector

- A minimal extension of the Higgs sector (5 Higgs bosons)
 - Light SM-like Higgs (h⁰)
 - Heavy CP-even neutral Higgs (H⁰)
 - CP-odd, neutral Higgs (A⁰)
 - Two charged Higgs (H⁺, H⁻)
 - two more parameters
 - Ratio (tan β) of vacuum expectation
 - values and mixing angle α .
 - <u>energy scan</u> of $e^+e^- \rightarrow H^+H^$ sensitive to value of tan β esp. for large tan β

A. Ferrari, LC-PHSM-2003-051 Equal \sqrt{s} steps 0.8 – 3.5 TeV

We need to be prepared to vary $\mathsf{E}_{\mathsf{CMS}}$

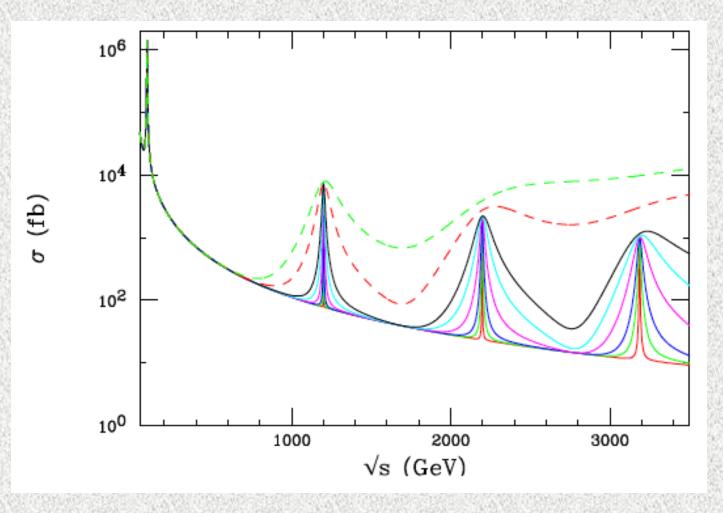
Extra Dimensions


- Is the solution to the Hierarchy Problem found in the presence of large extra dimensions?
 - N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D 59, 086004 (1999)
 [arXiv:hep-ph/9807344] and Phys. Lett. B 429, 263 (1998) [arXiv:hep-ph/9803315]
- If yes, this suggests existence of excitations in the extra dimensions,
- But the details depend on the nature of the extra dimensions
 - Rigid or Soft Branes?
 - Warped extra dimensions?

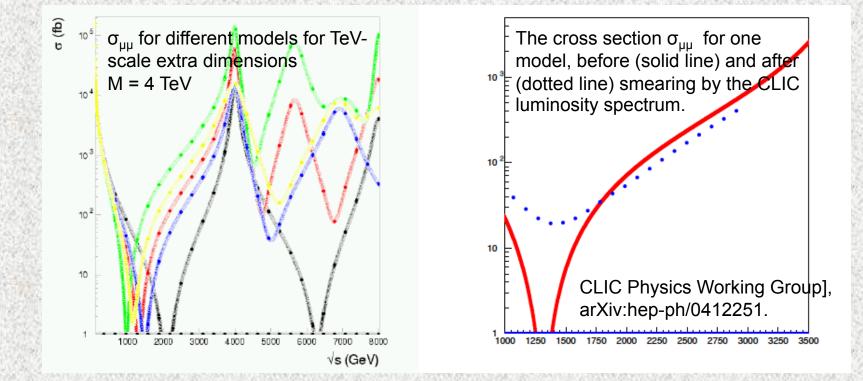
2.4.4.4

 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/ 9905221]

$\underline{e^+e^- \rightarrow \gamma + G}$


 by measuring the γG cross section at different centre-ofmass energies, one can disentangle the Planck scale and the number of extra dimensions δ simultaneously

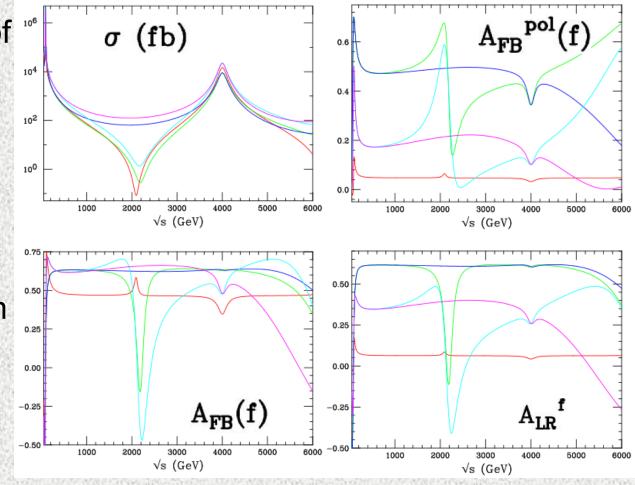
Kaluza-Klein Graviton Excitations


The spectrum of Kaluza-Klein graviton excitations produced in a Randall- Sundrum model in the process $e+e^- \rightarrow \mu+\mu-$, showing different possibilities for their decay widths

CLIC Physics Working Group, arXiv:hep-ph/0412251.

Kaluza-Klein Excitations

Examples of models with one or more TeV-scale extra dimensions



The positions of peaks, dips and corresponding cross sections and widths uniquely reveal the extra-dimensional model.

Resolving Degenerate KK Excitations

- Kaluza-Klein excitations of standard model gauge fields likely unresolvable by the LHC (eg M ~ 4 TeV) – Z' like
- Linear Collider operating below the resonance can resolve and interpret them with measurements of
 - $-\sigma_{\rm ff}(\sqrt{s})$
 - $A_{FB}, A_{LR}, A_{FB}^{\text{pol}}$

We need to be prepared to vary $\mathsf{E}_{\mathsf{CMS}}$

 $e^+e^- \rightarrow \mu^+\mu^- b\overline{b}$ and $c\overline{c}$ for two alternative model of extra dimensions; red muons, b green(blue), c cyan(magenta) for 'conventional' (AS). T. Rizzo, Phys Rev D61, 055005 (2000)

SUSY or UED? Which is It?

- SUSY and UED can produce similar looking spectra
 - Distinctions: KK towers, <u>spin</u>, extended Higgs sector/ gaugino states
- Example level 1 KK muons $e^+e^- \rightarrow \mu_1^+ \mu_1^$ compared to smuon production: $e^+e^- \rightarrow \mu^{-} \mu^{-} \mu^{-}$
- Threshold scan will establish spin
 - determines the masses
 - confirms the particle nature (spin)
 - UED cross sections rise at threshold $\propto\beta$
 - Supersymmetry threshold onset is $\propto \beta^3$

We need to be prepared to vary E_{CMS}

M.Battaglia, A. Datta, A. De Roeck, K. Kong, T. Matchev, JHEP 07(2005)033

Fourth Generation

- A fourth generation of fermions has not been ruled out.
- Mass theoretically limited to < 1 TeV
 - M.S. Chanowitz, M. A. Furman and I. Hinchliffe,
 - Nucl. Phys. B153 (1979) 402.
- LHC may discover a 4th generation, but the leptons will be very difficult for a hadron machine (remember the tau)
- <u>Thresholds scans</u> would offer discovery potential and powerful information on 4th generation particle properties

We need to be prepared to vary E_{CMS}

CLIC Physics Requirements and Benchmark Processes


- LCD Note 2010- DRAFT
- Update DRAFT List of Requirements for the CLIC accelerator, 13 Oct 2010
- following discussions involving M. Battaglia, J.J. Blaising, K. Elsener, G. Giudice, L. Linssen, D. Schlatter, D. Schulte, F. Teubert, J. Wells (CERN)
- 6. Requirements for lower energies, after operation of the 3 TeV CLIC
 - Threshold scans are expected to be necessary, if possible down to energies around $\sqrt{s} = 1$ TeV. They will be performed within the luminosity budget and running period mentioned above (3-5 ab⁻¹ in 6-10 years). Cross sections for scans will be exceedingly small near threshold. Therefore, luminosity will remain a crucial parameter for operation at lower energies. For the threshold scans, the peak luminosity rather than the total luminosity will be relevant.
 - Typically, the luminosity within 1% of the c.m. energy is required to be less than 40% reduced at 1.5 TeV c.m., and less than 60% reduced at 1 TeV c.m. Pending further studies, the requirements on beam energy accuracy and beam polarisation are the same as for the 3 TeV CLIC.

The future is uncertain. But we must be prepared!

- We expect the LHC to start clarifying the physics landscape
- Until then, keep an open mind: many solid reasons suggest a need to operate below the full energy of the collider
- Nature may provide unanticipated discoveries, and the variable \sqrt{s} capability could be a critical tool to elucidate the new physics
- We must design and construct our future linear colliders with the capability to lower the center of mass energy without significant loss of luminosity
- More quantitative work on the physics requirements of luminosity versus energy is needed

"I never said half the things I really said."

J. Brau

