Bilinear R parity violation at the ILC

Neutrino physics at colliders?

Benedikt Vormwald, Jenny List, Gudrid Moortgat-Pick IWLC 2010 Geneva, 18.-22.10.2010

R parity violation – Phenomenology

Potential of ILC

What is R parity?

- *B* and *L* violating terms allowed in superpotential (\Leftrightarrow SM)
- *B* and *L* violation never observed (proton decay)
- \rightarrow Invent new symmetry which is a combination of *B*, *L* (and *S*)

$$P_{R} = (-1)^{3B+L+2S}$$

$$\implies \text{SM particles:} P_{R} = +1$$

$$\implies \text{SUSY partners:} P_{R} = -1$$

Consequences of conservation:

- proton decay prohibited
- sparticles can only be produced in pairs
- SUSY decay products contain odd number of LSPs
- LSP absolutely stable

What is R parity?

- *B* and *L* violating terms allowed in superpotential (\Leftrightarrow SM)
- *B* and *L* violation never observed (proton decay)
- \rightarrow Invent new symmetry which is a combination of *B*, *L* (and *S*)

bRPV term

i = 1...3

Superpotential

$$W = \mathcal{E}_{ab} \left(h_{U}^{ij} \hat{Q}_{i}^{a} \hat{U}_{j} \hat{H}_{u}^{b} + h_{D}^{ij} \hat{Q}_{i}^{b} \hat{D}_{j} \hat{H}_{d}^{a} + h_{E}^{ij} \hat{L}_{i}^{b} \hat{R}_{j} \hat{H}_{u}^{a} - \mu \hat{H}_{d}^{a} \hat{H}_{u}^{b} + \mathcal{E}_{i} \hat{L}_{i}^{a} \hat{H}_{u}^{b} \right)$$

MSSM superpotential

\rightarrow Higgs/Slepton-mixing

→ Sneutrinos acquire VEV $\langle \tilde{V}_i \rangle = v_i$

→ corresponding RPV soft SUSY breaking term

$$L_{soft}^{BRpV} = -B_i \varepsilon_{ab} \varepsilon_i \widetilde{L}_i^a H_u^b$$

masses and mixings of neutral fermions

Basis of neutral fermions: $\Psi^{0T} = (-i\lambda', -i\lambda^3, \tilde{H}_d^1, \tilde{H}_u^2, V_e, V_\mu, V_\tau)$

Benedikt Vormwald | Bilinear R parity violation at the ILC | 18.-22.10.2010 | Page 5

 $\mathbf{M}_{\mathbf{N}} = \begin{pmatrix} M_{\chi^0} & m^T \\ m & 0 \end{pmatrix}$

Approximate diagonalization of $\, M_{\scriptscriptstyle N} \,$

 ${\bf M_N}$ can be block-diagonalized for small RPV parameters via the Seesaw-like diagonalization: ${\bf M_N}=diag(M_{\gamma^0},m_{e\!f\!f})$

$$m_{eff} = -mM_{\chi^0}m^T = \frac{M_1g^2 + M_2g'^2}{4\det M_{\chi^0}} \begin{pmatrix} \Lambda_e^2 & \Lambda_e\Lambda_\mu & \Lambda_e\Lambda_\tau \\ \Lambda_\mu\Lambda_e & \Lambda_\mu^2 & \Lambda_\mu\Lambda_\tau \\ \Lambda_\tau\Lambda_e & \Lambda_\tau\Lambda_\mu & \Lambda_\tau^2 \end{pmatrix}$$

where $\Lambda_i = \mathcal{E}_i v_d + \mu v_i$

"alignment parameters"

A final diagonalization of M_{χ^0} leads to the neutralino masses $m_{\chi^o_i}$ and a diagonalization of m_{eff} leads to one tree level neutrino mass.

Some results of this model

- largest neutrino mass at tree level
- 2 mixing angles at tree level
- remaining masses/angles at 1-loop-level
- correct scales of mass differences Δm_{ii}²

$$m_{v} = \frac{M_{1}g^{2} + M_{2}g^{2}}{4 \det M_{\chi^{0}}} \left|\vec{\Lambda}\right|^{2}$$

$$\tan \theta_{23} = \frac{\Lambda_{\mu}}{\Lambda_{\tau}} \qquad \tan \theta_{13} = -\frac{\Lambda_{e}}{\sqrt{\Lambda_{\mu}^{2} + \Lambda_{\tau}^{2}}}$$

How is that connected to colliders?

dominant part of $\widetilde{\chi}_{1}^{0} - W - l_{i}$ coupling: $O_{i}^{L} = \Lambda_{i} \cdot f(M_{1}, M_{2}, \mu, \tan \beta, v_{d}, v_{\mu}) \propto \Lambda_{i}$ a) $\operatorname{Br}(\mu q q')/\operatorname{Br}(\tau q q')$ 10 $\tan^2 \theta_{23} = \left| \frac{\Lambda_{\mu}}{\Lambda} \right|^2 \cong \frac{BR(\tilde{\chi}_1^0 \to \mu W)}{BR(\tilde{\chi}_1^0 \to \tau W)}$ 1 10⁻¹ \rightarrow Neutrino physics at collider experiments 10^{-2} 0.5 $5\,10^{-2}\,10^{-1}$ 1 $\tan^2(\theta_{atm})$

Benchmark scenario/ mass spectrum

 \rightarrow Higgs/Slepton mixing (new particle names S, P)

Benedikt Vormwald | Bilinear R parity violation at the ILC | 18.-22.10.2010 | Page 8

Production cross section

Production cross section

- small RPV parameters
 → LSP decays into SM
- typical SUSY cascades with LSP decay in the end
- almost all sparticle-production processes can be used to study LSP decays

Decay channels of LSP (BR>0.01)

LSP decay	Branching ratio	
Wμ	0.034	
Wт	0.031	
v ₂ b b	0.035	
v ₁ т е	0.159	
ν ₁ τ μ	0.279	
V ₁ т т	0.453	

Study neutrino parameters

neutrino mixing, ...

Study LSP parameters

mass (endpoint), mixing character, ...

Decay width of LSP

 $\overline{\Gamma} = 3.77 \cdot 10^{-13} \text{ GeV} \rightarrow \overline{I} \approx 523 \, \mu\text{m}$

Displaced vertices expected!

Analysis strategy

Looking for: - LFV signal

- two displaced vertices per event (+cascade products from IP)
- high effective mass per event

Systematical uncertainties (one example)

 $\int L dt = 500 \text{ fb}^{-1}$ (4 years of ILC running) $\sigma_{+-}(500 \text{GeV}) = 2200 \text{ fb}$ Detection efficiency = 0.5

Signal/background estimation

- tree level cross sections for SM BG (Whizard 2.0; arXiv:0708.4233)
- just looking for similar final states

for example:

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow (\nu\tau\tau)(\nu\tau\mu)$$
$$e^{+}e^{-} \rightarrow SM \rightarrow \tau\tau\tau\nu\mu\nu$$
$$= 3\tau + 1\mu + \text{MET}$$

 $→ N_{W\mu} = 37500 \cdot 0.5 = 18750 \quad \sigma_{rel}^{stat} = 0.73\%$ $→ N_{WT} = 34100 \cdot 0.5 = 17050 \quad \sigma_{rel}^{stat} = 0.77\%$ $\sigma_{rel}^{stat} (Br(χ→Wµ)/Br(χ→WT)) ≈ 1%$

Benedikt Vormwald | Bilinear R parity violation at the ILC | 18.-22.10.2010 | Page 12

Conclusion, Outlook

Conclusion

- bRPV enables access to neutrino parameters at colliders
- > Predicted cross sections are quite promising
- SM background small
- Need for very good vertex detection
- Polarisation is a very useful tool to increase signal over background
- ILC is highly capable to look at that kind of models

Outlook

- Implementation of bRPV in Whizard using FeynRules on the way (Benjamin Fuks)
- > Detailed study in progress

Thank you for your attention.

Backup slides

