Testing effective Yukawa couplings in Higgs studies at Linear Colliders

Emidio Gabrielli CERN PH-TH

in collaboration with B. Mele talk based on arxiv:1005.2498

IWLC2010 ECFA 18 - 22 October 2010 @ CERN

What if Higgs boson is only responsible of Mw, Mz but not of fermion masses?

- fermion masses mf ChSB
- in SM, ChSB and EWSB (Mw,Mz) generated by the Higgs mechanism at same scale ~ <H>

$$\mathcal{L} = \mathbf{Y_f} \bar{\psi}_{\mathbf{f}} \psi_{\mathbf{f}} \mathbf{H} \implies \mathbf{m_f} = \mathbf{Y_f} \langle \mathbf{H} \rangle$$

- not (yet) any experimental evidence supporting tree-level Yukawa couplings Yf
- maybe ChSB & EWSB have different mechanisms
- → compositeness, extra-dimensions, technicolor...

- Anyhow, there are indications that SM Higgs could be at the origin of Mw and Mz
 - EW precision tests favour a light a Higgs
 - not very sensitive to Yf
 - → H perturbative unitarity in WW → WW
- What if fermion masses put in by hand?
 - no tree-level Yf NO spontaneous ChSB
 - SM becomes non-renormalizable, but can be considered as an effective field theory

Proposed Scenario

- Mf generated by some new mechanism set at a high-energy scale ∧ >> EW scale
- NO tree-level Yukawa couplings
- ChSB mechanism assumed to give a small contribution to EWSB
- H providing the main contribution to Mw and Mz
- only SM degrees of freedom propagating below \(\Lambda\), with a light H

- scale where Yf are vanishing (i.e. scale of fermion mass generation)
- Yf not protected against radiative corrections due ChSB → radiatively generated
- Iarge logs $g_i^{2n} \log^n (\Lambda/m_H)$ can be summed up by solving Renormalization Group Equations
- SM RGE are not suitable due to tree-level Yukawas

RGE derived by keeping Yf and Mf as independent parameters

1-loop RGE for Yukawa couplings

$$\frac{d\mathbf{Y}_{\mathbf{U}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3 \xi_{H}^{2} \left(\mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) - 3 \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \left(\mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) + \frac{3}{2} \mathbf{Y}_{\mathbf{U}} \left(\mathbf{Y}_{\mathbf{U}} \mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) - \mathbf{Y}_{\mathbf{U}} \left(\frac{17}{20} g_{1}^{2} + \frac{9}{4} g_{2}^{2} + 8 g_{3}^{2} - \mathbf{Tr}(\mathbf{Y}) \right) \right\}, \tag{9}$$

$$\frac{d\mathbf{Y}_{\mathbf{D}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3 \xi_{H}^{2} \left(\mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) - 3 \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \left(\mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) + \frac{3}{2} \mathbf{Y}_{\mathbf{D}} \left(\mathbf{Y}_{\mathbf{D}} \mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) - \mathbf{Y}_{\mathbf{D}} \left(\frac{1}{4} g_{1}^{2} + \frac{9}{4} g_{2}^{2} + 8 g_{3}^{2} - \mathbf{Tr}(\mathbf{Y}) \right) \right\}, \tag{9}$$

W(L) polarizations

$$\mathbf{Y} \equiv N_c \mathbf{Y_U} \mathbf{Y_U} + N_c \mathbf{Y_D} \mathbf{Y_D} + \mathbf{Y_E} \mathbf{Y_E}$$

$$\mathbf{Y_f^{sm}} \equiv \frac{g_2}{\sqrt{2}M_W} \operatorname{diag}[\mathbf{m_f}]$$

SM RGE recovered for ${
m Y_f^{\scriptscriptstyle SM}}
ightarrow {
m Y_f}$

Theoretical Framework

- Yf $(\Lambda) = 0$ Yf (MH) (high-energy) RGE (low-energy)
- only SM degrees of freedoms assumed below Λ
- $^{\blacksquare}$ Yf (MH) perturbative for mH < < H> ~ 246 GeV

Higgs BRs dramatically affected

10⁻⁴

m_H (GeV)

10⁻⁴

m_H (GeV)

Higgs BRs normalized to SM ones

10⁻³

m_H (GeV)

10⁻³

m_H (GeV)

Higgs decay modes dramatically affected

- differs from naïve fermiophobic scenarios where Yukawa couplings are set to zero at EW scale
- main H decays modes → WW, bb, γγ, ZZ
- BR(H→ bb) comparable or larger then enhanced γγ

H production at LHC changes

- Yt coupling radiatively induced (small)
- gluon-gluon fusion suppressed
- Vector boson fusion (VBF) becomes the dominant production mechanism at LHC

LHC14 cross sections X BR [fb]

VBF

 $\Lambda = 10^{x} \text{ GeV}$

Fermiophobic scenario → FP

Comparable rate to the SM (gg) but VBF/BCKG much cleaner

LHC14 cross sections X BR [fb]

 $\Lambda = 10^{x} \text{ GeV}$

Fermiophobic scenario → FP

Tevatron: present bounds

- CDF & D0 analyzed various fermiophobic scenarios with enhanced H $\rightarrow \gamma \gamma$
- mH < 110 GeV excluded for pure FP</p>
- a dedicated analysis is necessary here due to non-trivial depletion of BR(H → bb)
- it could probe at best mH < 110 GeV</p>

Future searches: LHC

- **Excellent probe of this scenario**
- \blacksquare σxBR much larger than SM ($\gamma \gamma$, WW, ZZ, $Z\gamma$)
 - better S/B ratio compared to SM (VBF,VH)
- better theoretical accuracy (VBF, VH)

Effective Yf at Linear Colliders

- no new degrees of freedom below TeV except an almost fermiophobic light Higgs
- very good option →

$$\sqrt{
m S}=350\,{
m GeV}$$

advantages

- optimized Higgs production rate via ZH
- \blacksquare $\sigma(ZH) > \sigma(Hvv)$ almost monochromatic H
- good potential to measure radiative Yukawa couplings
- \blacksquare could constrain the scale Λ of ChSB

Higgs production cross sections

- we will show only $\sigma(ZH)$ x BR at 350 GeV → for interesting channels
- Inote that: $\sigma(Hvv) + \sigma(HZ) @500GeV \sim \sigma(HZ) @350GeV for MH<150 GeV$

Accuracy on BRS for SM Higgs boson

Expected experimental uncertainties ■ error bars →exp. sensitivities

"Phase 1": 500 fb $^{-1}$ at 350 GeV, no beau

SM Higgs branching ratio uncertainties

	$m_H=$ 120 GeV	140 GeV
$\overline{BR(b\overline{b})}$	2.4%	2.6%
$BR(car{c})$	8.3%	19.0%
BR(au au)	5.0%	8.0%
BR(WW)	5.1%	2.5%
BR(gg)	5.5%	14.0%

New analysis needed to establish ∆BR(H → ff)

Total Higgs decay width

Correlations of BR(H → ff)

BR[%]

 $BR[\tau\tau] \sim 1-2\% BR[bb]$

Outlook

- New predictive scenario where $\mathbf{mf's}$ arise at large scale Λ and induce \mathbf{Yf} radiatively \rightarrow only 1 free param.
- big impact on Higgs phenomenology → "improved" FP scenario: effective Yf and Higgs production via W/Z radiation (no gg → H at LHC!)
- Enhanced BR($\gamma\gamma$, WW, ZZ, γ Z) for MH < 140 GeV and possibly large radiative BR(H → bb)
- Excellent LHC potential for testing this scenario, but accurate study of H → bb,cc, ττ, requires LC
- Rates for $e+e- \rightarrow ZH \rightarrow Zbb$ remarkably sensitive to the scale Λ !
- New analysis of LC sensitivity to Higgs BR in the new framework needed

Backup

Tevatron cross sections X BR (fb)

