Cavity Yield-Cost Models

İİĻ

Peter H. Garbincius Fermilab IWLC2010 – Geneve October 2010

filename: PHG cavity yield-cost models oct2010.ppt following Jim Kerby at BAW-1 – KEK -10sept2010

How does cost of cavities vary with yield, reprocessing, and spread of operating cavity gradients (± 20% with <G> ≥ 35 MV/m)?

 $\begin{array}{ll} f = processing/(materials + fabrication + processing) \\ Wilhelm B => f = 0.35 \mbox{ (TESLA model)} \\ Jim Kerby => f = 0.30 \mbox{ so I'll use <f>} = 0.325 \end{array}$

cavity cost factor =

average price paid per useful cavity/production cost = 1.00 if Y=100% & no need to reprocess

if yield vs. cost models analyzed:

- <f>= 0.325 = processing fraction = < WB + JK>
- RDR: Y = 80% no reprocessing => ccf = 1/Y = 1.25
- Y1=Y2=80%, reprocess, Y_{composite}=96%, ccf = **1.11**
- Y_{composite}=90%, Y1=Y2=68.4% reprocess, ccf = **1.22** simple calculation for above 3 cases, see below for:
- ILC processed cavities in DB, reprocess < 35 MV/m
- ILC DB, grad spread for $G \ge 25, 28, 30, 35$, reprocess
- Rong-Li's 8 most recent ACCEL/RI cavities

- fixed G \ge 35 MV/m => Y1 = 62.5% (Y2 = 67%) Y_{composite} = 87.5%

- for accepted G \ge 31 MV/m => Gradient spread => ± 15%
- Peter's class of toy models of cavity performance

TDP/R&D plan release 5 for G ≥ 35 MV/m 1st Pass, 35 cavities, ~29% 2nd Pass, 27 cavities, ~56%

A Brief Look Forward

10 Sept 2010 J Kerby

IIL

BAW - 1

Analysis of ILC EP Cavity Performance Kerby_BAW-1_page2.xls + Akira-23sept 2010

G																
- Kerby_bawy-i_pagez.xis [Compatibility Mode]																
-	Α	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	P C
1	Kerl	by_BAW-1_pa	ge_2.xls/IL	.C data				ILC Summary	Accep	ptance Thresh	old - MV/m	35	30	28	25	35(1) & 28(2)
2			fractional cost for processing =			PHG-22sept2010 Yield-1st pass			36%	57%	60.7%	64%	35.7%			
З	PHG	G-14sept2010	0 RDR had, doesn't matter much			Yield-2nd pass			29%	27%	30.0%	22%	52.9%			
4		cavity	G(1)	G(2)		if you cho	ose		composite Yield for 2 passes		or 2 passes	54%	68%	71.4%	71%	67.9%
5	1	TB9AAC013	41.80	41.80	1	not repro	cessed	Avg Gra			ent - MV/m	39.1	36.4	35.4	35.2	37.5
6	2	TB9ACC014	41.50	41.50	2			plus/minus % +7%/-10% +1				+15%/-15%	+18%/-18%	+19%/-26%	+11%/-23%	
7	3	TB9AES008	41.10	41.10	3			average cavity cost (equals 1.00 for Y1=)			r Y1=100%)	2.24	1.66	1.56	1.55	1.76
8	4	TB9AES007	41.00	41.00	4									no diff betwe	een 28 & 25	Akira - 28sept2010
9	5	AC122	38.88	38.88	5											
10	6	AC115	38.60	38.60	6		Acceptance	e Threshold =	35	MV/m		Acceptance	e Threshold	30	25	
11	7	TB9RI019	38.00	38.00	7		#tested		28					28	28	
12	8	TB9AES010	37.70	37.70	8		#pass 1		10					16	18	
13	9	TB9ACC011	37.00	37.00	9		Y1 =		35.7%					57.1%	64.3%	
14	10	TB9ACC012	35.10	35.10	10		#trashed	(Z132)	1					1	1	
15	11	AC150	34.33	33.23	11		#reproces	sed	17					11	9	
16	12	TB9AES009	33.40	36.00	12		#pass 2		5					3	2	
17	13	TB9RI018	33.10	39.00	13		Y2 =		29.4%					27.3%	22.2%	
18	14	Z143	32.57	41.00	14		f=process	;/(cavity+process)	0.325	0.3 = Kerby m	nodel, 0.35	=Wilhelmm	odel	0.325	0.325	
19	15	AC127	31.25	27.85	15		pass eithe	er 1 or 2	15		take avg			19	20	
20	16	TB9ACC016	31.20	39.30	16		net yield		53.6%	expect this t	o increase			67.9%	71.4%	
21	17	ACCEL7	29.00	41.20	17		what is to	tal cost paid	33.525					31.575	30.925	
22	18	AC124	26.01	30.93	18		avg cost p	er cavity	2.24	where => 1 fo	or Y1 = 1009	6		1.66	1.55	
23	19	Z139	24.93	32.75	19					this is 2.21 fo	or Kerby, 2.	26 for Wilhe	Im			
24	20	TB9AES005	20.50	20.50	20				_					_	_	
25	21	ACCEL6	19.00	29.00	21		Sum of Gra	adients, pass #1 =	390.68					586.53	641.54	
26	22	Z141	18.29	20.70	22		Sum of Gra	adients, pass #2 =	196.50					104.88	61.75	
27	23	TB9ACC015	18.00	19.00	23		Sum Gradi	ents, pass 1+2	587.18					691.41	703.29	
28	24	Z130	17.30	16.60	24		#cavities	passing 1+2	15					19	20	
29	25	Z131	17.17	17.96	25			avg Gradient	39.15					36.39	35.16	
30	26	AC126	16.37	6.14	26			spread +/-	6.8%					14.9%	18.9%	
31	27	TB9AES006	14.10	22.20	27			spread +/-	-10.3%					-15.0%	-26.0%	
32	28	Z132	16.83	ILC proces	sing, but l	known defe	ect, not rep	rocessed - Jim Ker	by - 15se	pt2010						

PHG - Cavity Yield-Cost Models Geneve - Oct2010

Analysis of ILC EP Cavity Performance Kerby_BAW-1_page2.xls summary & plots

ILC Summary	Acceptance Threshold - MV/m	35	30	28	25	35(1) & 28(2)
PHG-22sept2010	Yield-1st pass	36%	57%	61%	64%	36%
	Yield-2nd pass	29%	27%	30%	22%	53%
	composite Yield for 2 passes	54%	68%	71%	71%	68%
	Avg Gradient - MV/m	39.1	36.4	35.4	35.2	37.5
	plus/minus %	+7%/-10%	+15%/-15%	+18%/-18%	+19%/-26%	+11%/-23%
average cavity	cost (equals 1.00 for Y1=100%)	2.24	1.66	1.56	1.55	1.76

no diff between 28 & 25 Akira - 28sept2010

PHG - Cavity Yield-Cost Models Geneve - Oct2010

C Rong-Li's 8 latest ACCEL/RI cavities

cavity	pass 1	pass 2
A11	37.0	
A12	35.1	
A13	41.8	
A14	41.5	
A15	18.0	19.0
A16	31.2	39.3
RI18	33.1	39.0
RI19	38.0	

- For fixed $G \ge 35 \text{ MV/m}$
 - Y1 = 62.5%, reprocess all 37.5% that fail
 - Y2 = 67%, Ycomposite = 87.5% ccf = **1.28**
 - But A15 had little hope of passing, so only
 reprocess 2, both pass 2nd test => ccf = 1.24
- Accepting a spread in G:
- just first pass: Y1 = 87.5%, G ≥ 31, <G>= 36.8 => ± 15% ccf = 1.14
- reprocess only A15 => find Y2 = 0, same <G> & spread ccf = 1.19

indicates that 87-90% is attainable but some small % will never pass need larger statistical sample

PHG - Cavity Yield-Cost Models Geneve - Oct2010

ic Peter's simple model – vary parameters

- (Glo,Ghi) = range of Gradients in first test
- assumed flat for this example, can change
- Ghi = absolute maximum G for these cavities
- Go = Gradient threshold for acceptance
- f = processing/(materials + fabrication + processing)
- ccf = cavity cost factor (defined above)

PHG - Cavity Yield-Cost Models Geneve - Oct2010

PHG - Cavity Yield-Cost Models Geneve - Oct2010

Geneve - Oct2010

Peter's Y1=flat model – vary parameters

cavity-reprocessing-cost-mo	del-PHG-29s	ept2010.xls									
			processing cost is a substantial fraction (~1/3) of the cost of producing the cavity								
Input parameters	cost of reprocessing (relative to initial cost of materials + fabrication + 1st processing)										
first pass distrib	assumed flat between Glo and Ghi										
first pass distrib	assumed flat between Glo and Ghi										
acceptance threshold		av	g cost	G0 = 25	G0 = 27	G0 = 29	G0 = 31	G0 = 33	G0 = 35		
Factor-hi for 2nd test 50%		150%	G	o = 15	1.402	1.527	1.680	1.863	2.105	2,452	
Factor-lo for 2nd test		-10%	90%	G	o = 17	1.306	1.424	1.568	1.747	1.984	2.306
				G	o = 19	1.203	1.315	1.466	1.625	1.836	2.160
1		GI	o = 21	1.123	1.215	1.335	1.497	1.712	2.002		
frequency distribution				G	o = 23	1.058	1.134	1.233	1.368	1.559	1.842
assumed flat for this exercise		G	o = 25	1	1.063	1.146	1.258	1.417	1.670		
		G	o = 27	1	1	1.068	1.168	1.304	1.518		
		G	o = 29	1	1	1	1.083	1.211	1.398		
				av	g Grad	G0 = 25	G0 = 27	G0 = 29	G0 = 31	G0 = 33	G0 = 35
				G	o = 15	31.82	31.76	31.56	31.25	30.88	30.28
				Gl	o = 17	32.48	32.50	32.26	31.78	31.05	30.24
0 Glo	Go		Ghi Gradi	ient G	o = 19	33.23	33.28	33.07	32.61	31.81	30.51
		acceptance	of 1st	t test Gl	o = 21	33.44	34.16	34.03	33.60	32.69	31.34
		G	o = 23	33.73	34.61	35.04	34.67	33.88	32.57		
				G	o = 25	34.00	34.82	35.79	35.84	35.16	33.87
obvious le	sson			G	o = 27	35.00	35.00	35.91	36.96	36.41	35.25
			G	o = 29	36	36	36	36.98	37.57	36.56	
get Glo as	hiah	as Do	ossibl	e!							
		lo	wer G	25	27	29	31	33	35		
		սբ	per G	43	43	43	43	43	43		
				∆/mid-range	2 (±%)	26.5%	22.9%	19.4%	16.2%	13.2%	10.3%
								accept <g></g>	≥ 35 MV/n	n & range	≤ ±20%

PHG - Cavity Yield-Cost Models Geneve - Oct2010

ilr

ÌİĹ

conclusions

RDR model for disposable cavity yield ccf = 1.25 was simplistic and *maybe* somewhat conservative, but, experience of entire ILC cavity database shows current yields are too low to attain even ccf = 1.25Rong-Li's analysis of last 8 ACCEL/RI cavities is encouraging - latest results showing progress should be given higher weight in any projection Watch out for pathologies, e.g. AC126, Z132, A15, these will limit cost savings

Accepting range of cavity operating gradients can reduce cost, but not quantatively demonstrated yet

Need more statistics!

back-up slides

PHG - Cavity Yield-Cost Models Geneve - Oct2010

Cavity Yield & Cost Model (2nd process/test)

Y1 = yield for first test, Y2 = yield of second process & test assume Y1 = Y2 – this may not be true: first failure may not be correctable by second processing assume all cavities failing first test are reprocessed & retested this may not be true: 1st test may show non-recoverable defect let YF = desired final yield after 2 tests, then

Y1 + (1-Y1)*Y2 = YF => Y + (1-Y)*Y = YF for Y1=Y2=Yto get YF = 90% (goal of R&D), can solve to get Y = 68.4%

- Currently for cavities w ILC processing Y1 = 36%, Y2 = 29%
- Seems pretty aggressive to get to Y = 68% and YF = 90%, may not be attainable cumulatively over all ILC R&D cavities, but hopefully this rate could be attained by end of TDP, such yield is needed for economics of cavity construction

What is impact on average cost of acceptable cavities?

Cavity Cost Model (2nd process/test)

- Assuming processing is fraction f of cavity initial production, then cost of cavity processed twice is (1+f) cost units
- Jim Kerby estimates f=0.30, Wilhelm Bialowons ests f= 0.35 then total cost thru second process test = 1 + Y1*f given final yield = YF, <cost per accepted cavity> = (1+Y*f)/YF and ______ <cost per accepted cavity> _____ =

<cost for cavity production & 1st processing>

1.217 for Kerby's f= 0.30 and 1.234 for Wilhelm's f=0.35 both for Y = 68.4% to give YF = 90%

some small net savings, wrt RDR, but at lower required yield Y compared to 1.250 for RDR "throw away" model for Y = 80%

 However, if ILC attains Y = 80%, the 2nd process/test model would give YF = 96% and <cost per accepted cavity> = 1.104 for f=0.3 and 1.115 for f=0.35

PHG - Cavity Yield-Cost Models Geneve - Oct2010

summary of cavity processing

- RDR estimate used a very crude, conservative model: if a cavity failed its initial vertical test, it was discarded, not reprocessed, nor was the niobium recycled. However, the Yield for this first test was assumed to be 80%. These correspond to Y1=0.8, Y2=0, f=0 in my eqns.
- Reprocessing and retesting can have a major cost impact If Y1 = Y2 = 80%, the <cost of accepted cavities> decreases 1.25 => 1.11 (avg JK+WB) but if Y1 = Y2 = 68.4%, then although YF = 90%, the <cost of accepted cavities> only decreases1.250 => 1.225
- Costs (incl. Yield) for 15,801 cavities is 10.6% of RDR est. So with 2nd process & retest, we would save Y=80% => (1.25-1.11)/1.25 * 10.6% = 1.19% of RDR est Y=68.4% => (1.25-1.225)/1.25*10.6% = 0.26% of RDR est.

ir iic

- Relative to the cost of fabricating and processing the cavity once (= 1.00 unit cost)
- Average cost of accepted cavity for Y=80%
 without reprocessing (RDR model) is 1.25 units
 penalty = 0.25 units
- Average cost of accepted cavity for Y1=Y2=80%
 WITH one additional reprocessing is 1.12 units penalty = 0.12 units
- This agrees with Wilhelm's observation!, but
- Average cost of accepted cavity for Y1=Y2=68.4%
 WITH one additional reprocessing is 1.225 units penalty = 0.225 units, small savings wrt RDR
- Moral: reprocessing helps, but gotta IMPROVE YIELD