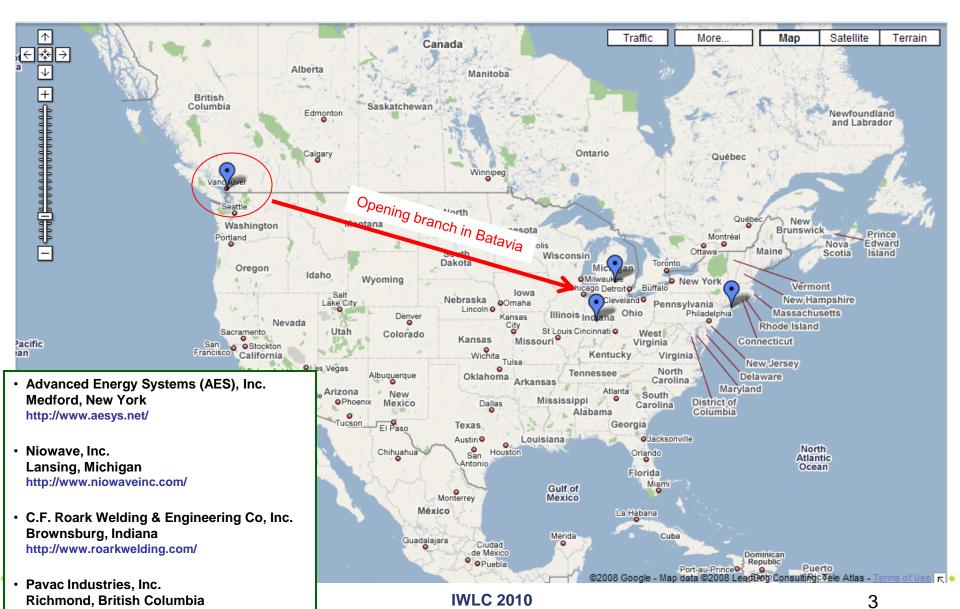


Industrialization Progress and Plans in the Americas

Jim Kerby
(Mark Champion FNAL BAW Sept 2010
Bob Kephart FNAL IPAC May 2010
Tony Favale AES IPAC May 2010)
20 October 2010


Model

- Develop SRF Technology in Laboratories, utilizing existing industrial capabilities and further transferring technology to industries when possible
 - Competition
 - Availability
 - Potential Future Capacity
 - Laboratory provides testing, diagnostic, and initial (low volume) infrastructure
- Develop a broad base for future cavity procurements
- Maximize industrial capabilities and capacity to the extent possible with contracts of up to tens of cavities, vacuum vessels, etc

http://www.pavac.com

Cavity Vendors

Cavity Orders

Tesla-shape nine-cell cavities			
Description	No. Cavities	Status	
AES 1-4	4	tested	
AES 5-10	6	tested	
AES 11-16	6	delivered Aug-Sep 2010	
AES 17-36	20	Planned deliveries: 10 in Apr-Jun 2011, 10 in Mar-May 2012	
Accel 6-9	4	tested	
Accel 10-17	8	tested	
Accel 18-29	12	testing in progress	
Jlab fine-grain 1-2	2	tested	
Niowave-Roark 1-6	6	First two received; balance due late 2010	
Niowave-Roark 7-16	10	Planned deliveries: 3 in Jun 2011, 3 in Mar 2012; 4 in Dec 2012	
Pavac 1-10	10	Planned deliveries: 3 in Jun 2011, 3 in Mar 2012; 4 in Dec 2012	
Total	88		
Already Received	44		
Tesla-shape single-cell cavities			
Description	No. Cavities	Status	
AES 1-6	6	tested for vendor qualification; currently used for R&D	
Accel 1-6	6	tested for vendor qualification; currently used for R&D	
Niowave-Roark 1-6	6	tested for vendor qualification; currently used for R&D	
Pavac 1-6	6	received summer 2010	
Additional R&D cavities	10	out for bid	
Total	34		
Already Received	24		

Vendor Interactions

- Engineer assigned to each vendor
- Vendor visits as needed
- Occasional bilateral meetings with scientific staff for reporting of observations, performance results, and discussion of production techniques
- Frequent vendor contact at conferences and workshops
 - i.e. recent hydroforming meeting at Fermilab, with all North American cavity vendors in attendance

IWLC 2010 5

New Vendor Capabilities

- Whole cavity BCP at AES and Niowave
 - Flow through interior chemistry with adjustable flow rate and temperature
- Horizontal EP development at AES
 - Designed for 1300 MHz ILC cavities and 650 MHz Project X cavities
- Establishment of Pavac US operations in Batavia IL
 - Will include machine shop, pre-weld etching, and EBW

New Lab Infrastructure

Jlab oven currently used for hydrogen degassing of all Americas Region cavities

New oven under commissioning at Fermilab

- Cornell has identical on order
- Larger oven due at Fermilab in late 2010

Industry / Laboratory Partnership

		Standard Cavity Recipe
Defect Prevention	Fabrication	Nb-sheet (Fine Grain)
		Component preparation
Defect Detection and Repair		Cavity assembly w/ EBW
Surface Resetting	Process	BCP + 1 st (Bulk) Electro-polishing (>120um)
For < 25MV/m	ndustry	Ultrasonic degreasing with detergent, or ethanol rinse
quenches drive	Ind	High-pressure pure-water rinsing
defect recognition /		Hydrogen degassing at > 600 C
repair / prevention much earlier in the		Field flatness tuning
manufacturing cycle		2nd Electro-polishing (~20um) Ultrasonic degreasing or ethanol rinse High prossure pure water rinsing
For > 25 MV/ m limits		Ultrasonic degreasing or ethanol rinse
continue efforts to		High-pressure pure-water rinsing
better control and		Antenna Assembly 5
understand process		Antenna Assembly Baking at 120 C Performance Test with temperature, and mode
Post VT Defect Remediation	Vertical Test	Performance Test with temperature and mode measurement
Post VT Re-EP		→inspection, reprocessing, other remediation

20 October 2010 J Kerby **IWLC 2010** 8

Hydroforming Activites

- Recrystallized fine grain Nb tube developed by Black Labs LLC and ATI-Wah Chang
 - Uniform microstructure, good for forming, long enough for complete 9-cell
- Two tubes were formed into 2- and 3-cell units at DESY w/ participation from FNAL (winter 2009-2010)
- 9-cell cavity from these components being assembled (@Jlab), will be processed and tested
- Hydroforming summit at Fermilab 1 Sept 2010
 - Nb industry, hydroforming industry, NA cavity vendors present
 - With industry participation formulated a plan for realization of nine-cell cavity hydroforming
 - ILC ART plans to fund in FY11-12

Cryomodule / RF Procurements

- Strategy notes CM assembly is <10% of cryomodule value
 - Number to be assembled in US in current phase is small
- Design CM at labs, order piece parts / sub assemblies from industry, assemble at Fermilab
 - May not be ILC model
 - CM1-2 from Europe (kit / purchase)
 - CM3-6 US vendors using ARRA funds
- CPI supplying
 - all US couplers
 - three (DESYx2, FNAL NML) 10 MW multi beam klystrons

Industrialization Studies

- Funded industrial investigations / cost models of
 - ILC RF Unit Industrial Cost Study
 - ILC Cavity Fabrication Optimization for High Quantity Production
 - ILC He Vessel Design for Cost Reduction
- US Industry notes the ILC is a Project, not a Business
 - Limited scope / quantity of follow on work
 - Factory setup costs substantial, may be best born by project
 - Government owned, Industry operated facility suggested
 - LHC model for integrated laboratory / industry partnership to best address risks
- Planning further studies to understand facility and training needs for production ramp up

Summary

- Americas region efforts focused on utilizing existing industrial skills, and transferring new skills to industry as processes become stable
 - Mitigate risk by spreading knowledge
 - Effort completed through production and test of tens of cavities, fewer cryomodules
- Laboratories host test, diagnostic and R&D/low volume efforts
- Successfully bringing new vendors up to speed in cavity production
- Industries assuming larger role in processing
- Industrial studies continue and will inform ILC production models and R&D efforts