Hadron Showers in the CALICE AHCAL

Shaojun Lu

shaojun.lu@desy.de

October 2010

Outline

- PFLOW and imaging calorimeter
- AHCAL prototype and e.m. validation
- Track segments and multiplicity
- Identification of shower start point
- Longitudinal hadron shower profiles
- Shower radius and leakage
- Summary

PFlow and Imaging Calorimeter

 Measure each particle type in the detector subsystem that provides the best resolution

$\frac{\sigma_E}{E} = \frac{21}{\sqrt{E}} \oplus 0.7 \oplus 0.004E \oplus 2.1 \left(\frac{E}{100}\right)^{+0.3} \%$ Resolution Tracking Leakage Confusion

Tracker

- charged hadrons
- electrons
- muons

Electromagnetic Calorimeter

- photons
- \bullet π^0

Hadronic Calorimeter

- long-lived neutral hadrons
- Optimization of HCAL geometry $=> 3x3 \text{ cm}^2 \text{ tiles}$

Particle Flow Performance

- The performance of PandoraPFA algorithm with ILD detector concept is studied
- using MC samples ~10 000 Z \rightarrow uds, $E_Z = 91.2, 200, 360$ and 500 GeV.

Jet Energy	$rms_{90}(E_j)/E_j$
45 GeV	$(3.74 \pm 0.05)\%$
100 GeV	$(2.92 \pm 0.04)\%$
180 GeV	$(3.00 \pm 0.04)\%$
250 GeV	$(3.11 \pm 0.05)\%$

- Physics list compared: LCPhys, QGSP_BERT, QGS_BIC, FTFP_BERT, LHEP
- Within 4% in agreement on the obtained Jet Energy Resolution

CALICE Test-beam

- CALCIE collaboration is preparing/performing large scale test-beam
- A comprehensive set of data has been collected with the AHCAL
- Comparison with simulated data

Highly Granular AHCAL Prototype

AHCAL size ~1m³

layers 38

interaction length $5.3\lambda_I$

x-y scannable

impact angle 0-30 deg

channels 7608

materials Steel -Scintillator cell size (cm²) 3x3 to 12x12

light yield ~13 pixel/MIP

 $S/N \sim 10$

Validation with e.m. Showers

- Use positron data, no ECAL in front, to validate detector understanding and calibration
- Simulation includes p.e. statistics, SiPM non-linearity, electronic noise, light cross talk between tiles

- Non-linearity < 4% @ 50 GeV
- Stochastic:

data: $a = 22.5 \pm 0.1 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ [\%/\sqrt{E}]}$ MC: $a = 20.4 \pm 0.2 \text{ (stat)} \text{ [\%/\sqrt{E}]}$

• Constant term:

data: $b = 0 \pm 0.1 \text{ (stat)} \pm 0.1 \text{ (syst)} \text{ [\%/\sqrt{E}]}$ MC: $b = 0 \pm 0.6 \text{ (stat)} \text{ [\%/\sqrt{E}]}$

• c fixed to $\sim 60 \text{MeV}$ (pedestal event)

Composition of Physics Lists

• Geant 4.9.3 final version (12/2009)

CHIPS: Recently the model was extended such that it can be used over the full energy range. a promising new approach, but not yet tuned.

- Composition of the Geant4 physics lists for pions.
- All physics lists combine at least two models.
- The energy range up to 55 GeV is displayed here.

Identification of Track Segments

- The high granularity of the calorimeter allows detailed 3D studies of the substructure of hadron showers
 - Minimum ionizing track segments can be identified
 - Strong support particle flow algorithm

Shower fine structure

Mean Track Length

Track Multiplicity

- Track segments in hadronic showers are a powerful tool to check models
- Too short tracks in all models, E < 20 GeV
- Too low multiplicity for LHEP and QGS_BIC

Position of Shower Start

Position of shower start

Longitudinal shower profile

- Developed a method to identify the first hadron interaction
- Position of shower start in the calorimeter as a function of the number of interaction lengths
- Method allows to measure longitudinal profile without fluctuations in first interaction

Longitudinal Shower Profile

z = 0, first identified nuclear interaction point

- Increased sensitivity with longitudinal shower profile from first nuclear interaction point, fluctuation \pm 1Layer.
- Agreement between data and simulation around 20%
- Most model predict too short showers at high energy

Mean Shower radius

- Shower radius: distance between hit and shower axis weighted with energy
- Showers become narrow with increasing energy
- MC models predict narrower showers than in data

Longitudinal Shower Profile

 $0 \le R < 60 \text{ mm}$

 $120 \le R < 180 \text{ mm}$

- z [mm]Shower core, reflect the e.m. shower information
 - overshoot stronger
- Larger radius, reflect the neutron information
 - string models less deviations

Leakage

- Leakage depends on:
 - beam energy
 - shower starting position
- Reconstructed energy decreases and resolution worsens

- Mean energy corrected
- Resolution improved

Summary

- AHCAL Prototype Testing the Concept
 - Operation of a 8000 channels system
 - Calibration established
 - Systematics established
- AHCAL Prototype New Tool for Hadron Shower Physics
 - Developed method to identify the first hadron interaction
 - Developed method to estimate and correct longitudinal leakage
 - Confronted several simulation models with data
- The tungsten HCAL data will come soon
 - WHCAL pions test beam start on November 2010
 - Allow new comparisons of simulation models with data