

MICROMEGAS for Imaging Hadronic Calorimetry at Linear Colliders

Catherine ADLOFF on behalf of the CALICE collaboration

Calorimetry at Linear Colliders

- Calorimetry based on Particle Flow
 - ⇒ Imaging calorimeters: Compact showers High granularity

- For hadronic calorimeters
 - Granularity more important than energy resolution (up to 30 million channels)
 → digital option :
 - 1 bit readout 1cm² cells
 - DHCAL : loss of linearity at high energy (100 GeV/c)
 → semi-digital option:
 - 2 bit readout 1cm² cells

HCAL R&D

- SiD HCAL Mechanical Engineering Studies (N. Geffroy)
- Simulations (J. Blaha)
 - HCAL extensive studies (analog or digital/semi-digital readout, W or SS...)
 - SiD and CLIC Detector effort
- Developments for a 1m³ SDHCAL with MICROMEGAS within the CALICE and RD51 collaborations

C. ADLOFF

MICROMEGAS for a SDHCAL

- Characteristics:
 - Proportional mode3 mm ionisation gap
 - Bulk-MICROMEGAS
 128 μm amplification gap
 - -1 cm² pad
 - Electronics:
 embedded 2 bit readout
 (3 thresholds)

- Operating at low voltage
 < 500 V
- High detection rate
- Robust, cheap (industrial process)
- Thickness:
 down to 6 mm
- Gas : Ar95% Isobutane5%

MICROMEGAS for a SDHCAL

- Prototype basic performances (analogue readout)
 - Energy resolution @ 5.9 keV ~ 7.5 % (FWHM = 17.6 %)
 - MIP most probable value : ~ 20 fC
 - At 1.5 fC threshold :
 - Efficiency > 97% with 1% relative variation (384 channels)
 - Multiplicity < 1.1

MICROMEGAS for a SDHCAL

- Prototype basic performances (analogue readout)
 - Gain sensitivity to ambient parameters
 - pressure : -0.6 %/mbar
 - temperature : 1.4 %/K
 - Excellent behaviour in electromagnetic and hadronic showers

 2008 : First operational Bulk MICROMEGAS with 1 embedded readout electronics !

2009 : 48x32 cm² bulk MICROMEGAS with 24 embedded ASICs

Test box

Beam Profile Nov. 2009

- Prototype technological choices
 - 6 independent bulks (controlled individually inside the test box)
 - 24 ASICs per bulk (64 channels per ASIC)
 - 5 mm gap between pads from 2 bulks \rightarrow 2 % dead area inside gas volume
 - 12 mm total thickness (incl. 2+2mm steel covers)
 - 1 Detector interface board (DIF) per slab (2 bulks)
 - Fits for the 1m³ steel or tungsten structures

• 2009 :

Assembly procedure validated on mechanical prototype

• 2010 :

first prototype

- 4 bulks with HR2
- 1 bulk with HR2b
- 1 dummy PCB

After 1 week

the 1 m² is fully assembled!

1 m² June/Jully 2010 Test beam CALICE & RD51 beam time

TB setup @ CERN-SPS

- synchronization telescope+1m² (busy \Rightarrow veto)
- Delay of ~1 μs between trigger and HR2 readout: time to trigger info used to find beam particle hits

C. ADLOFF

Preliminary Analysis (M. Chefdeville)

- Use telescope to extrapolate tracks to the m²
 - select straight tracks in telescope: single aligned hits in at least 3 of the 4 **MICROMEGAS.**
 - look for hits in m² in 3x3 cm² area around extrapolated track impact \Rightarrow efficiency and multiplicity

C. ADLOFF

m² CHAMBER

Preliminary Results (M. Chefdeville)

- V_{mesh} = 420V \Rightarrow maximum efficiency
 - − Gas gain ~ 15000 \rightarrow expected Landau MPV ~ 20 fC
 - due to a too short shaping time of HR2, only 10 % of the signal is seen \rightarrow effective signal MPV is 2 fC !
- Noise hit probability after time cut ~ 0.01 % per channel
- 1 chip (HR2b with gain equalized)
 - Average efficiency of 45.2 ± 4.1 %
 - Average multiplicity of 1.05 ± 0.02

Preliminary Results (M. Chefdeville)

- $V_{mesh} = 410V \Rightarrow$ uniformity for efficiency/multiplicity
 - All chips of the HR2b bulk
 - 400000 triggers per chip
- First results on 2 chips : mean values and RMS remain the same

Power Pulsing (R. Gaglione, G. Vouters)

• Preliminary study

- DIF+InterDIF ~ 1.2-1.3 A
- HR2 of 1 ASU (analog) $\,^{\sim}$ 0.4-0.5 A , except for first ASU $\,^{\sim}$ 1.4A (12 faulty chips)
- HR2 of 1 ASU (DAQ or Digital) ~ 0.02A
- Switch ON/OFF the analog part of all chips during SPS spill.
 - this corresponds to a current of ~ 3 A (4*0.4+1.4) during analog_OFF
 - t(ON) = 2 ms and t(OFF) = 10 ms
 - S/N ratio are similar: quantitative analysis is on going

1 m² Test Beam Summary

- Mechanics : the Square Meter is gas tight and robust.
- Electronics :
 - Careful grounding : good noise condition
 - Electronic gain equalized (only for HR2b)
 - Successful synchronization between Gassiplex (telescope) and HR DAQs
 - The HR DAQ is stable and reliable
 - Power Pulsing was performed for the complete square meter
- Detector :
 - MESH are stable (very few HV supply trips)
 - High gain possible (MESH tested up to 420V = Gas gain up to 15000)
- Software :
 - Reconstruction of simultaneous events from both DAQs
 - File book keeping
- Lot of data taken with the whole MICROMEGAS Square Meter (5 ASUs) plus multiplicity and efficiency scan of each HR2b
 ⇒ Very promising preliminary results

Progress on DAQ and FE

- Detector Interface (DIF)
 - 170 DIF board have been produced and tested
 - 165 out of 170 DIFs are fully operational
 - Intermediate DAQ with CCC fully operational
 - CALICE DAQ v2 collaboration work : DHCAL-DIF code
- MICROROC (for SDCHAL- MICROMEGAS or GEM)
 - Development with LAL/OMEGA
 - Same digital part as HARDROC (LAL/OMEGA) ⇒ easy integration to actual PCB and DAQ
 - New analogue part + sparks protection network (LAPP)
 - Shaping time matching the detector signal duration
 - Blocks integration (LAL/OMEGA)
 - First prototypes have been produced
 - Preliminary tests :
 - functionality ok
 - peaking time matching specification
 - gain values at 10 % from simulation
 - trigger on 1fC (Cdet ~75pF)

Conclusion

- Success of the first 1m² MICROMEGAS prototype:
 - Mechanical design and assembly procedure of the 1 m² prototype have been validated.
 - Smooth functioning during test beam over one month.
 - Test beam main goals have been successfully reached.
 First results are available
- Design and production of MICROROC, a MICROMEGAS optimized readout ASIC
- DIFs for 1m³-RPC have been produced and successfully tested. An intermediate DAQ is available for large number of DIFs readout for MICROMEGAS or RPC

Future

- Finalise test beam data analysis of the 1 m² prototype
- Test beam of 1 m² prototype inside the W-structure NOW!
 - common counter with AHCAL-DAQ -> shower profile
- Extensive test of the new FE readout electronics MICROROC
- Production of several 1 m² chambers with MICROROC
- Participation in the CALICE DAQ v2 effort

19th November 2010 : 1m² MICROMEGAS inside the W-structure (T7 @ CERN-PS)

C. ADLOFF

Acknowledgements

 The LAPP group Catherine Adloff Jan Blaha **Jean-Jacques Blaising** Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espargilière Laurent Fournier **Renaud Gaglione** Nicolas Geffroy Jean Jacquemier Yannis Karyotakis **Fabrice Peltier Julie Prast Guillaume Vouters**

Collaborators

David Attié Enrique Calvo Alamillo Paul Colas Christophe Combaret **Paul Dauncey** Mary-Cruz Fouz Iglesias Wolfgang Klempt Lucie Linsen Rui de Oliveira **Dieter Schlatter** Nathalie Seguin Christophe de la Taille Wenxing Wang

Tecnológica

IR

C. ADLOFF

IWLC2010, Geneva, Oct 20, 2010

Imperial College

London