

Towards a 1m³ Glass RPC HCAL prototype with multi-threshold readout

M. Vander Donckt for the CALICE - SDHCAL group

CALCER Glass RPC SDHCAL prototype

- 40 1m² layers of
 - steel absorber (1,5cm)
 - 6mm thick glass RPCs in 5mm thick steel cassettes
- Total of $5\lambda_{I}$
- Avalanche mode TFE (94.5% Isobutane (5%), SF6 (0.5%)
- Multiple thresholds to allow for the recognition of the dense shower center.
- 1 cm² charge collectors with 3 thresholds
- Power-pulsed electronics
- Requires no cooling !

Cross-section of GRPCs

Total thickness including embedded electronics: 5.925mm

20/10/10

IWLC 2010 - M. Vander Donckt

Resistive coating

Coating	Resistivity	Multiplicity	HV Connection	Application
Graphite	400 kΩ/ □	>1.6 @ 7.4 kV	\checkmark	
Licron	>20 MΩ/ □	\checkmark	X Lost	Spray
Statguard	few M Ω / \Box	\checkmark	\checkmark	Roll (liquid paint)
Colloidal graphite	few M Ω/\Box			Silk screen printing

GRPC read-out

• 3 DIFs (Detector InterFace boards)

144 ASICs (HARDROC2 chips) reading 64 1cm² PADs each

ipnl

Cosmic test bench

Up to five 8x32 cm Chambers for tracking

Trigger scintillator

ipnl

Beam tests

- 1 m² Statguard chamber tested @ CERN-PS in May 2010 10 GeV π
- 2 1m² colloidal graphite chambers inserted @SPS H4 (150 GeV π) in September 2010

CALCO Efficiency homogeneity studies inl

CALCO Multiplicity homogeneity studies iPU

CALION Principle of power pulsing

Beam conditions: 80GeV @ High Rate Aim: PowerPulsing tests using B field.

1ms after power-ON : no efficiency loss. Studies are still ongoing to reduce waiting time to 0.1 ms

Calorimeter for

Analysis Summary

 \checkmark Efficiency more than 95%.

- Multiplicity < 1.3 Pad/MIP (must be re-defined using the 3 thresholds)
- ✓ Detection rate: Steady up to 100 Hz/PAD

✓ Noise rate: ~0.1 Hz/cm²

- ✓ Detector working in a 3 Telsa field
- Good efficiency/multiplicity homogeneity on large chamber
- ✓ Validity of power pulsing concept proven.

Towards 1m³

Electronics: ASICs test facility

The ASICs are ready for the 40 layers. Currently under test, using a robot. Max test time : 10 minutes/ASIC using Labview-based application

Successful insertion from above

r Donckt

20/10/10

IWLC 2010 - M. Vand

ANSYS simulation of stress and deformation : <150µm

0 - M. Vander Donckt

Summary

- 1 m² glass RPCs have good efficiency, multiplicity, power pulsing works.
 - Not detailed but under control: ageing, gas flow, HV & gas services
- 1 m³ construction ongoing to be finished first term 2011
- Ongoing;
 - threshold calibration using charge injection
 - Latest Colloidal graphite testbeam result analysis