

C Intiers

The second generation of the CALICE DAQ

Vincent Boudry LLR, École polytechnique

> *IWLC'2010 CICG, Geneva 20/10/2010*

Slide from Ch. de la Taille

Vincent.Boudry@in2p3.fr

2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

Read out: token ring

- mega Readout architecture common to all calorimeters
- Minimize data lines & power

Data bus

Slide from Ch. de la Taille

Vincent.Boudry@in2p3.fr

2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

ECAL DAQ : data volume and rate

- Raw Data volume
 - 2 Bytes of Energy data/Channel, 20 Million channels
 - Raw data per bunch train ~ 20M ch ×5000 BX × 2B \Rightarrow 200 GBytes ECAL
 - No way to digitize inside the \sim ms train
 - 10 kbytes/channel/train ~ 50 kbytes/ch/s
 - Physics data rate : 90 MBytes/train = ~20 Bytes/ch/s
- Auto-trigger + Zero suppression mandatory
 - 10³ rate reduction => drastic for power dissipation
 - Digitize only signals over $\frac{1}{2}$ MIP with noise < MIP/10
 - Allow storage in front-end ASIC
 - Noise MUST be tamed

Slide from Ch. de la Taille

Vincent.Boudry@in2p3.fr

<u>()mega</u>

The ASU board: clock lines

- <u>Clocks</u> : 2 lines, drive every other chip, terminated at the end,
- 100 ohm resistance in series inside the chip
- Clock switched off inside the chip when not used

- Data : 4 lines : 2, doubled for redundancy
- Each chip has 2 data outputs that can be removed from each line by slow control
 Slide adapted from Ch. de la Taill

Slide adapted from Ch. de la Taille

Vincent.Boudry@in2p3.fr

2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

mega

DAQ Task goal

- "Generic" DAQ based AMAP on commercial boards
 - **Extensible** for Large Detectors + redundancy
 - ► **Flexible** → FPGA based : various acquisition modes (triggered, ILC-like)
- Provide the **digital** readout of CALICE embedded front end (*ROC chips) [1st gen was analogue]
 - All calorimeters seen through CALICE standard Detector InterFace board (DIF)
 - **Sends** configuration; fast commands; clocks; Triggers
 - Receives Data; Busy
 - ▶ 1 (opt. 2) Concentrator cards level
 - ▶ 1 Clock and Control Card (CCC) for the fast signal distribution and collection
 - Advanced Off-Detector Receiver (FPGA based event builder)
 - All signals on 1 cables; add-hoc secure communication protocol
 - "low speed" 8b/10b coding
- 3 CALICE prototypes en route:
 - ▶ SDHCAL : ~400.000 ch; Digital (2b/ch \rightarrow 2.5 with BC information & fmt)
 - ► ECAL : ~ 22.000 ch; Energy $(12b \rightarrow 32.2)$
 - ► AHCAL : ~ 52.000 ch: Energy & time (2×12 b \rightarrow 32.3)

CALICE DAQ2 scheme

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

7/24

CALICE DAQ2 scheme

External Trigger

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

Optique (alt. Cable) GigE

Debug USB

.....

CALICE DAQ2 scheme

Detector InterFace (DIF) board

- Can use the same hardware for every detector
 - Same connectors & interfaces
 - Compact : credit card and below
- Customizable anyway
 - Size
 - Test beam/calibration features (add exttrig, clk, RAM, ...)
 - Debug (test of single detector module)
- Functionalities are simple
 - VFE chip management (power pulsing, SC, DAQ) with a common interface
 - Local storage of SC data
 - Protocol conversion (8b/10b to VFE)
 - Based on low cost fpga
- DIF task force (4 persons)
 - LLR, DESY, LAPP, Cambridge
 - Specifications
 - Common firmware

in use : ECAL, DHACAL,AHCAL but same firmware

Actually 3 different hardware versions

Firmware for use with 8b/10b link developed at LLR and shared (svn server)

- Used for system level tests
- Get ROC interface blocs from LAPP
- Mixing is a success : SC data generated on both DHCAL and ECAL DIFs

Slide from R. Cornat

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

DCC and LDA are essentially similar to an ethernet switch but using a low level protocol

They both fan-out/in fast isochronous signals on a dedicated path and commands on the 8b/10b serial link

LDA has a fast link : Gb ethernet to the upper level = ODR, and can connect to 10 DIFs or DCC with the 8b/10b serial link

DCC can connect to 1 LDA and 9 DIFs using the 8b/10b serial link, data from DIF are buffered and sent to the LDA

LDA

- The LDA (from Enterpoint) consists of :
 - Mulldonoch2 baseboard;
 - add-on HDMI board to connect to 10 DIFs;
 an add-on ethernet board to connect to an ODR.
- Firmware development :
 - DIF <=> LDA link running;
 - new code soon to be posted to svn;
 - same format as ODR in svn repository.

± ICI

CAMBRIDGE MANCHENER Rend Million 4U

MANCHESTER

MANCHESTER AND REPORT

CCC

- · Overall status unchanged for a while.
- Fans out clocks, fast commands and control signals.

UNIVERSITY OF CAMBRIDGE

- · Fans in busy.
- Full complement of 10 boards with power supplies tested.
- . One in LLR and one in LAPP.
- CCC link to LDA still needs to be done :
 Board designed and firmware developed for testing;
 - Soon to produce enough boards for all LDAs.

ODR

- Receive data on 4x fibre (RX),
- Write to disk FAST (>150MB)
- Send data up fibre (TX)
- Controlled from Linux driver
- DOOCs Interface

Documentation / repository

 All components should have extensive documentation on twiki : it is being updated and as components are basically done, can soon be finalised.

UNIVERSITY OF CAMBRIDGE

- Twiki main :
- https://twiki.cern.ch/twiki/bin/view/CALICE/CALICEDAQ
- Also list of hardware availability /status started.

https://twiki.cern.ch/twiki/bin/view/CALICE/HardwareList

Clock and Control Card

- Developed at UCL (M. Warren, M. Postranecky)
- Distributes on 8 channels (HDMI, SMAs, NIM, ...) via dedicated circuitry for **low jitter**
 - ► Int | ext clock
 - ► Fast Signal (Trigger | Sync)
- Sums-up BUSY
- Performs Trigger logics
 - ► CPLD
- Was used as DIF-Master (dev^t of LAPP)
 - Aka also sending hard-coded commands to DIF directly
 - Standalone tests with USB readout

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

HW status

- 10 ECAL DIF ready and working; 10 in prod; mat for 40 in total (CAM)
- DHCAL DIF: 165/170 cards tested & ready (LAPP)
- AHCAL DIF: in design, prod in NIU \rightarrow 4 unit
- CCC: 10 cards ready; 4 in use in 4 labs; 3 more shipped \rightarrow LLR
- DCC: 3 prototypes ready; 2 cards being tested \rightarrow 20 end of october
- LDA: 20 main board OK
 - ► 5 v1 + 15 v2 Ethernet mezzanine : ✓
 - ▶ 6 CCC mezzanine; clock OK Busy & Trigger not yet tested (TBC)
 - ▶ 20 HDMI Mezzanine: faulty connectors on 8 \rightarrow in repair
- ODR + PC
 - ▶ 8 ODR ready ; network card being used instead for debugging
 - ▶ 6 PC available: 1 in LLR ; 3 other ready; OS needs to be upgraded

~ No more basic problem with HW

14/24

FW status

	LDA	DCC	DIF's		
Ethernet	✓ at full speed				
CCC	Clk; Trig; Busy	Clk; Trig; Busy	Clk; Trig; Busy		
Nlinks up	10 MUX on going	9	1		
Fast Commands	✓	✓	✓		
Block transfert	✓	×	×		
Data ¹⁾	✔ (< 50 MHz)	✔ (< 50 MHz)	✓ (<50 MHz)		
ROC			Structure ✓ Adapt SDHCAL USB Code on going		

• FW have been advancing rather fast during the last 3 months

Generic code for all DIFs

15/24

Many progresses recently End of October for first full minimal usable chain ?

Integration tests

- Systems available @ UCL, LLR and now Cambridge
- Whole chain established : DAO PC with ODR \Leftrightarrow LDA \Leftrightarrow DIF and CCC source
- Multiple 10 DIF \Leftrightarrow LDA links established
- FastTrig and Busy signals functional.

UCL

Ecal

DIF

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

Python Test toolkit

- Interactive hardware test software (GUI)
 - Each HW test easily scriptable: simple user-friendly python API: each function defined ↔ 1 graphical pane with "Run" button
 - Available to anyone working with USB/RS/Ethernet devices
- C libraries implementing the complete DIF Task force protocole

		File Edit Options	Buffers Tools Python Help
GULDA.py Messages LDA_version Messages send FC_DCC_reset send a fast command to reset the DC (720)D and print out the send FD Select Sele	C.get, status GUL_DCC.py C.get, status send PC_DCC_init, links send PC_DC_int, links send PC_DC_inth, links send PC_DC_int, links se	File Edit Options Image: Construction of the second prime of	Buffers Tools Python Help et status(INT0x_lda_out_mask = 0x8): K28.3/D15.0 (aka. 7C/D15.0, DCC get status) and whole DCC register page""" ions.encode 8b10b_kd(28, 3) ions.encode 8b10b_kd(15, 0) do lda_send_fastcmd(INT0x_lda_out_mask, comma, data) I.set_statusbar_message("Get_Status FCMD sent") k_DCC_get_status_page(ans[16:]) is not False 47% (189,0) SVN-1428 (Python) er action(DCC.send FC DCC reset) er_action(DCC.send FC DCC_init_links) er_action(DCC.send BT_DCC_get_status) er_action(DCC.send BT_DCC_get_status) er_action(DCC.send BT_DCC_stop_RTT) er_action(DCC.send BT_DCC_register_blob)
Reload Script	en inter mdokt oao invon Run Quint Run	Run GUI_DCC.p	ې Bot (7,0) SVN-1428 (Python) ن

https://svn.in2p3.fr/calice/online-sw/trunk/pyserdiag/

Vincent.Boudry@in2p3.fr

2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

Reliability tests

Stress tests using pseudo-random generator

- $9 \times \text{DIF} \rightarrow 1 \times \text{DCC} \rightarrow 1 \times \text{LDA} \rightarrow \text{PC}$
 - 4 DIFs generate pseudo random data
- Results
 - ▶ Direction DIF → LDA \checkmark
 - ► Maximum DCC → LDA link occupancy (40Mbps) ✓
 - ▶ Up to 5.6 TB transferred (2 weeks), no error

End-to-end test: FIFO write/read

- PC \leftrightarrow 1×LDA \leftrightarrow 1×DCC \leftrightarrow 1×DIF
 - Tests both fast-commands and block transfer "read" requests
- Results:
 - ► PC ↔ LDA Ethernet OK
 - still issues when interleaving Fast Commands with configuration

18/24

Performances

- Rather low demands in term of bandwidth (but >> @ ILC for same vol.)
 - ► SDHCAL : ~ 20MB/s in Spill
 - ► ECAL: ~100MB/s
 - ► AHCAL: ~ 300 MB/s
- Data limited by ASICs readout
 - Modes:
 - test beam single event
 - Test beam burst (≈ ILClike mode)
- Some code (System C, by D. Decotigny) exists for simulation of full chain
- Many other studies...

			DAQ	/2 data flux				
N DIF/LDA	N DIF/DCC	LDA-DIF Dclk	LDA-DIF FLUX	LDA Dclk	LDA FLUX	ODR FLUX	Disk Flux	
		[MHz]	[MB/s]	[MHz]	[MB/s]	[MB/s]	[MB/s]	
10	Ş	9 50	6.25	5 1000	125	1000	170	
.		Evt Size	Mem Size	ASIC Dclk	ASIC FLUX	1		
Detector	DHCAL			[MHz]	[MB/s]		from LC-DE	T-2004-029
		20 E	128	2.5	0.31			
h					_	-	1	
Mode	Calib/Noise	Calib/noise	TB	TB	Demo	Occupancy	for TR suits	
	Single				4.9	Moon	n IB evts	1 9
	40			· 4.0		siama		4.0
Touched DIE/pla		3 3	2.0	1	1	+3a /√Mem	Size	5.49
							0120	
ASIC	20 E	3 2 560 B	20 B	2 560 B	2 560 B			
R/O time 1	64 µ ;	s 8192µs	s 64µs	s 8192µs	; 8192µs			
R/O time ALL	3 072 μ s	s 393 216 µ s	s 307 µ s	s 39 322 µ s	; 39322µs		Parameters of	codes
DIF	960 E	3 122 880 B	96 B	12 288 B	12 288 B		Hardware (~	fixed)
R/O time	154 µ :	s 19661µs	s 15µs	s 1966µs	: 1966µs		DAQ (achiev	/able)
	0.000 5	1000 000 0	000 5	40.000 5	40.000 5		Physics (oc	cupancies)
LDA W/O DCC	9 600 E	3 1228 800 B	320 B	40 960 B	40 960 B			
R/O lime	77 4 3	s 9,030 µ s	i 3μ8	5 320 4 3	520µ3			
DCC	8 640 F	3 1 105 920 B	288 B	36 864 B	36 864 B			
R/O time	1 382 µ s	s 176947µs	s 46 µ s	5898μs	5898μs			
LDA w/ DCC	86,400 E	3 11,059,200 B	2,880 B	368,640 B	368,640 B			
R/O time	691 µ ;	s 88474µs	s 23 µ s	s 2949µs	2949μs			
ODR	172,800 E	3 22,118,400 B	5,760 B	737,280 B	737,280 B			
1000MB/s	173μs	s 22.118µs	s 6µs	s 737µs	s 737μs			
Disk	172,800 E	3 22,118,400 B	5,760 B	5 737,280 B	737,280 B			
1/UMB/s	1016μ	s 130108µs	s 34 µ s	s 4337µs	ε 4337μs			
Max R/O time	3 072 µ (s 393 216 µ «	307 µ s	39 322 U e	39 322 U s			
Min Freq	0.33 kH	z 0.00 kHz	3.26 kHz	0.03 kHz	0.03 kHz			
Min. evts Freg	0.00 11 12	0.33 kHz	0.20 1012	3.26 kHz	3.26 kHz			
			19MB/s					

Software: XDAQ framework

- dev^{ts} started @IPNL for electronics test using XDAQ in 2008
 - Ch. Combaret (IPNL)
 - Gained (a lot of) impulsion with involvment of L. Mirabito (resp. of DAQ SW for CMS tracker)
- Ran for ≥ 1 year in TB, Cosmics & Electronics test
 - USB readout
 - Interface to old LabView program
- Recent development
 - Writing of LCIO data in RAW format
 - versatile online analysis framework (root histos)
 - → Marlin Based

IPN Lyon

SW status

- Missing critical elements
 - Configuration DB (being worked on)
 - ► DAQ2 interface ↔ XDAQ being worked on
- Missing ancillaries

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010

Installation

- mechanics
 - mod. VME crate for
 - DCC
 - CCC
 - Special box for LDA
 - Support for cables
- Final set-up not yet known:
 - stand alone SDHCAL
 - stand alone ECAL
 - Stand alone AHCAL
 - Combined test
- \rightarrow 5 m long HDMI cables
 - halogen free;

Beam InterFace card

Basis:

- CALICE chips use auto-trigger
 - Readout can be triggered by single event using external trigger (e.g. beam hodoscope)
 - \rightarrow "Single event" mode
 - History of Chip is usable (e.g. in case of selective ext. trigger)
 - Readout triggered by environmental internal or extern trigger
 - Chip full
 - ILC-like mode (end-of-spill)
- Require some device to readout the beam line parameters
 - Scintillators; Cherenkov PM (coding of CEDAR bits)
 - Time of event (\supset rec for wire chambers)

Implementation

- 2 solutions
 - Add-hoc card for interfaces with a CALICE ROC (SPIROC ?) + 1 DIF
 - Small adaption (buffers) card on a DIF + "simulation" of a digital ROC in the FPGA
- Both offer full compatibility with CALICE DIF for the DAQv2.
- To be implemented for 2nd version of CALICE beam test

23/24

• One of the task of AIDA (WP8.6.2)

Conclusions & Outlook

- Technological prototypes of CALICE are getting close (1st will be SDHCAL → Spring 2011)
 - 2nd version of ROC chips available
 - ▶ Being integrated in large prototypes \rightarrow extensive TB in 2011
- All DAQ HW elements available
 - FW almost ready
 - Accomplishment of a long process
- SW: XDAQ took over for main stream
 - Some ancillary elements missing
- Combined (with other system) \geq 2012
 - Prepare HW and SW beforehand
 - ◆ SW & HW ↔ TLU & EUDAQ first
 - Performances (ODR use)
 - Part of AIDA WP8.6.2

Big effort for CALICE!!
~15++ individuals from:
UK: CAM, MAN, UCL, RHUL
FR: LLR, LAPP, IPNL
DE: DESY

Most of Code, Manual and HW description is available on CALICE twiki: https://twiki.cern.ch/twiki/bin/view/CALICE/CALICEDAQ

Vincent.Boudry@in2p3.fr 2nd gen CALICE DAQ | IWLC2010 | CICG, Geneva, 29/09/2010