

Crystals for the Homogeneous Hadron Calorimeter Detector Concept

Ren-yuan Zhu

California Institute of Technology

October 20, 2010

International Workshop on Linear Colliders 2010, CERN

Homogeneous Hadron Calorimeter

ilC

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous HCAL detector concept to achieve good jet mass resolution by measuring both Cherenkov and Scintillation light. It also eliminates the dead materials between classical ECAL and HCAL. This longitudinal segmented crystal HCAL is possible because of the latest development in large area compact readout devices.

Requirements for the materials to be used for HHCAL:

- Short nuclear interaction length: ~ 20 cm.
- Good UV transmittance: UV cut-off < 350 nm.</p>
- Some scintillation light, not necessary bright and fast.
- > Cost-effective material: $< \frac{2}{cc}$ for 100 m³!
- Radiation hardness is not crucial at the ILC/CLIC.

A series of workshops on material development for HHCAL: 1st 2/19/2008 at SIC, Shanghai, 2nd 5/9/2010 at IHEP, Beijing, 3rd 10/30/2010 at Knoxville, will go with SCINT, CALOR & IEEE NSS.

The HHCAL Detector Concept

R.-Y. Zhu, ILCWS-08, Chicago: a HHCAL cell with pointing geometry

October 20, 2010

Talk given in the International Workshop on Linear Collider by Ren-yuan Zhu, Caltech

10x10 cm ²

Interest of the Community

The 2nd workshops on material development for HHCAL was held on May 9 at Beijing, just one day before Calor2010 BGRI, Caltech, CERN, Fermilab, IHEP, Kharkov, LBL, Ningbo, SIC

Advantages / disadvantages HHCAL concept

R. Wigmans, *Comments on HHCAL*, in the 2nd workshop, Beijing

Advantages:

- No sampling fluctuations
- Some calibration problems characteristic for sampling calorimeters don't play a role

Disadvantages:

The issue of neutrons may be resolved by doping, e.g. Gd, or a long integration time at LC.

- No sensitivity to neutrons, and thus to invisible energy fluctuations
- Light attenuation
- Readout

- COST

October 20, 2010

Cost for Crystal Growth

A. Gektin: for mass produced Si crystals raw materials share 70% of the cost

Crystal cost structure (Si)

- 68% raw material
- 10% crucible
- 8% system cost
- 4% labor cost
- 4% power
- 6% other

Industrial Halide Growth: Kharkov

A. Gektin: Talk at the 2nd Workshop for HHCAL

October 20, 2010

Multi-Crucible Bridgman Growth: SICCAS

Guohao Ren of SIC: Talk at the 2nd Workshop for HHCAL

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	Bi ₄ Si ₃ O ₁₂ (BSO)	PbF ₂ (PbF)	PbWO ₄ (PWO)	PbClF
ρ (g/cm³)	7.13	6.8?	7.77	8.29	7.11
λ _ι (cm)	22.8	23.1	21.0	20.7	24.3
n @ λ _{max}	2.15	2.06	1.82	2.2	2.15
τ _{decay} (ns)	300	100	?	10-30 /10-200	30
λ _{max} (nm)	480	470	?	420/512	420
Cut-off λ (nm)	300	295	260	350	280
Light Output (%)	100	20	?	2	17
Melting point (°C)	1050	1030	842	1123	608
Raw Material Cost (%)	100	47	29	49	29

October 20, 2010

BSO Development at SICCAS

Hu Yuan of SIC: Talk at the 2nd Workshop for HHCAL

October 20, 2010

BSO Crystal

BGO

PbCIF Crystal

Guohao Ren of SIC: Talk at the 2nd Workshop for HHCAL

D= 7.11g/cm³ Melting point =608°C Space group=P/4nmm

a=4.10Å;c= 7.22Å

Figure 2.1 Phase relations in PbCl2-PbF2 system

PbClF Crystal samples grown with Bridgman method

Undoped PbCIF Crystal

Guohao Ren of SIC: Talk at the 2nd Workshop for HHCAL

Figure 5. Pulse height spectra of PbFCl and BGO crystals (T = 300 K).

1 mm thick samples

Crystal for Homogeneous HCAL

Crystals of high density, good UV transmittance and some scintillation light, not necessary bright and fast, are required. The volume needed is 70 to 100 m³: cost-effective material. Following 2/19/08 workshop at SICCAS, 5 x 5 x 5 cm samples evaluated.

October 20, 2010

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

Scintillation Selected with Filters

UG11/GG400 optical filter effectively selects Cherenkov/scintillation light

Cosmic Setup with Dual Readout

No Discrimination in Front Edge

Consistent timing and rise time for all Cherenkov and scintillation light pulses observed.

October 20, 2010

-5

-2.5

-6

Pulse Height (V)

PbF₂

Talk given in the International Workshop on Linear Collider by Ren-yuan Zhu, Caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT, which is configuration dependent.

Scintillation was Observed in PbF₂:Gd

Fast Scintillation of 6.5 p.e./MeV with decay time of less than 10 ns

D. Shen *at al., Jour. Inor. Mater* **Vol. 101** 11 (1995). C. Woody *et al., IEEE Trans. Nucl. Sci.* **43** (1996) 1303.

Luminescence Observed in PbF₂

Consistent Photo- and X-luminescence observed in doped PbF₂ samples grown by Prof. Dingzhong Shen of SIC/Scintibow.

Rare Earth Doped PbF₂

Multi-ms decay time observed, which is too slow to be useful.

Summary

- The HHCAL is an interesting detector concept providing a unprecedented combination of e/y and jet mass resolutions. The crucial issue is to develop high quality materials of low cost: < \$2/cc.
- Among all crystals, PbF₂, PbCIF and BSO seem the best candidates to meet the cost goal.
- While consistent photo and x- luminescence was found in Er, Eu, Gd, Ho, Pr, Sm and Tb doped PbF₂ samples, their decay time is at ms scale as expected from the f-f transition of the rare earth elements.

The scope of this R&D is now expanded to a broad range other of materials, including BSO, glasses and ceramics etc. See presentations at the 2nd HHCAL Workshop:

http://indico.ihep.ac.cn/sessionDisplay.py?sessionId=2&slotId=0&confId=1470#2010-05-09

October 20, 2010

3rd Workshop for the HHCAL

October 30, 2010, at Knoxville just one day before NSS2010

- 1. A. Para, Prospects for High Resolution Hadron Calorimetry
- 2. G. Mavromanolakis, Studies on Dual Readout Calorimetry with Meta-Crystals
- 3. D. Groom, <u>Degradation of resolution in a homogeneous dual readout hadronic</u> <u>calorimeter</u>
- 4. S. Derenzo, <u>High-Throughput Synthesis and Measurement of Candidate Detector</u> <u>Materials for Homogeneous Hadronic Calorimeters</u>
- 5. M. Poulain, <u>Fluoride Glasses: State of Art and Prospects</u>
- 6. I. Dafinei, <u>High Density Fluoride Glasses</u>, <u>Possible Candidates for Homogeneous</u> <u>Hadron Calorimetry</u>
- 7. P. Hobson, Prospects for Dense Glass Scintillators for Homogeneous Calorimeters
- 8. G. Dosovitski, <u>Potential of Crystalline, Glass and Ceramic Scintillation Materials for</u> <u>Future Hadron Calorimetry</u>
- 9. Tianchi Zhao, Study on Dense Scintillating Glasses

10. Jin-tai Zhao, <u>BSO-Based Crystal and Glass Scintillators for Homogeneous Hadronic</u> <u>Calorimeter</u>

- 11. Guohao Ren, Development of RE-Doped Cubic PbF2 and PbClF Crystals for HHCAL
- 12, N. Cherepy, Transparent Ceramic Scintillators for Hadron Calorimetry
- 13. J. Dong, Experimental Study of Large Area GEM

14. H. Frisch, <u>The Development of Large-Area Flat-Panel Photodetectors with Correlated</u> <u>Space and Time Resolution</u>

Spares

October 20, 2010

Talk given in the International Workshop on Linear Collider by Ren-yuan Zhu, Caltech

24

Why Crystal Calorimeter?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for a homogeneous hadron calorimeter with dual readout of Cherenkov and scintillation light to achieve good resolution for hadrons and jets.

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	104	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for a KLOE and SuperB? Crystals for the HHCAL detector concept?

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
d(LY)/dT [⊾] (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	SuperB	CMS ALICE PANDA	HHCAL?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.								

October 20, 2010

Scintillation of PbF₂ at Room T

- **1. Deformation and thermal treatment application to heavy scintillators production,** S.N. Baliakin et. Al., proceedings of SCINT1992, Chamonix, France, Sept. 22-26 (1992) 587.
- 2. A search for scintillation in doped and Othrorhombic lead fluoride, D.F. Anderson, J.A. Kierstead, P. Lecoq, S. Stoll, C.L. Woody, NIM A342, (1994) 473.
- **3. Observation of fast scintillation light in a PbF₂:Gd crystal**, C. Woody, S. Stoll, J. Kierstead, IEEE TNS, **43** (1996) 1303.

Luminescence of PbF₂ at Low Temperature

- **A.** Luminescence Kinetics of PbF₂ Single Crystals , M. Nikl, K. Polak, Phys. Status Solidi A117 (1990) K89.
- B. Luminescence of orthorhombic PbF₂, D. L. Alov, S. I. Rybchenko, J. Phys.: Condens. Matter 7 (1995) 1475.
- **C.** Photoluminescence of orthorhombic and cubic PbF₂ single crystal, M. Itoh, H. Nakagawa, M. Kitaura, M. Fujita, D. Alov, J. Phys.: Condens. Matter **11** (1999) 3003.

PbF₂ Samples Tested

A total of 116 samples with various rare earth doping were grown by vertical Bridgman method at SIC and Scintibow.

 \succ SIC samples: grown in **platinum** crucible, 1.5 X₀ (14 mm) cube.

> Scintibow samples: grown in graphite crucible, Φ 22 x 15 mm.

Photo- and X-luminescence

- Photo luminescence was measured by using Hitachi F-4500 fluorescence spectrophotometer.
- An AMTPEK portable X-ray tube was used for the Xluminescence measurement.

October 20, 2010

Comparison with the Ref. 2

No fast luminescence of d-f transition was observed

474

D.F. Anderson et al. / Nucl. Instr. and Meth. in Phys. Res. A 342 (1994) 473-476

Table 1

Properties of doped, cubic PbF₂ crystals

Producer	Dopant ^a	Band-edge	Luminescence
Optovac, Inc.	none	260 nm	no
Optovac, Inc.	Ba	330 nm	weak 358 nm
Optovac, Inc.	Tb	260 nm	slow 384, 414, 434,
			487, 542 nm
Optovac, Inc.	Bi	260 nm	no
Optovac, Inc.	Co	350 nm	no
Optovac, Inc.	Ag	260 nm	no
Optovac, Inc.	Cu	305 nm	no
Optovac, Inc.	Cr	260 nm	no
Optovac, Inc.	Dy	260 nm	slow 448 nm, 512 nm,
Optovac, Inc.	Sm		slow 564, 594, 600 nm
Optovac, Inc.	Yb		weak 405 nm
Optovac, Inc.	Eu		slow 467, 510, 589,
			619 nm
Optovac, Inc.	Nd 0.5%		no
Optovac, Inc.	Ho 0.5%		no
Optovac, Inc.	Er0.5%		no
Optovac, Inc.	Tm0.5%		no
S.I.C.	none	260 nm	no
S.I.C.	Ce 100 ppm	315 nm	no
S.I.C.	Ce	325 nm	no
S.I.C.	Ba 10%	325 nm	no
	Ce 0.1%		
S.I.C.	Ba 20%	315 nm	no
Ce	0.1%		
S.I.C.	Ce	325 nm	no
S.I.C.	Ce	325 nm	no

^a All dopants without concentrations are 1%.

Dopant	Caltech	Ref-2
Sm	f-f	f-f
Eu	f-f	f-f
Tb	f-f	f-f
Tm	no	no
Ce	no	no
Nd	no	no
Но	f-f	no
Er	f-f	no
Dy	no	f-f
Yb	no	f-f?
Pr	f-f	N/A
Gd	f-f?	N/A

Anode Current Measurement

Distance between source and sample: 2 cm

Anode Current: PWO & Un-doped PbF₂

PWO: L.O. = 20 p.e./MeV, anode current = 240 nA

Anode Current: All Samples

Summary of Anode Current

ID	Anode current (nA)	Size (mm)	Doping
Scintibow-1	51	18 x12 x10	Eu
Scintibow-18	52	Ф22Х15	Eu/Gd
Scintibow-27	53	Ф20Х15	Eu/Tb
Scintibow-B19	56	Ф20Х15	Eu/Tb/Na
Scintibow-B21	83	Ф22Х15	Eu/Bi/Na
Scintibow-B23	73	Ф20Х15	Eu/Bi/Na
Undoped	42	14 x 14 x14	