Anomalous triple and quartic gauge couplings involving photons at the LHC

Oldřich Kepka

October 19, 2010, IWLC, Geneva

Institute of Physics, Academy of Sciences, Prague

E. Chapon, O. Kepka and C. Royon, Phys.Rev.D81:074003, 2010

Exclusive production

New physics at the LHC

- using hadron accelerator as a photon collider
- exclusive QED process induced by two photon
- same process possible at e^+e^- at the ILC, electron point like, photon beams intensive
- can study anomalous coupling of γ to W

- gaps in rapidity regions devoid of particles, exchange of a photon
- only *WW* system produced and nothing else
- fractional momentum loss of the proton $\xi_i = (|\mathbf{p}_{bi}| |\mathbf{p}_i|)/|\mathbf{p}_{bi}|$
- ξ measured with forward detectors installed far away from IP
- mass measured with excellent resolution (\sim GeV)
- $M^2 \sim s\xi_1\xi_2$

Equivalent Photon Approximation (EPA)

- exchange of almost real $(Q^2 \approx 0)$ photons (Budnev flux)
- protons scatter at very small angles (< $100 \,\mu rad$)
- cross section factorizes

•
$$\rightarrow W^2 = 4E_{\gamma 1}E_{\gamma 2}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \int \frac{\mathrm{d}\sigma_{\gamma\gamma\to X}(W)}{\mathrm{d}\Omega} \frac{\mathrm{d}L^{\gamma\gamma}}{\mathrm{d}W} \mathrm{d}W$$

- for $\mu\bar{\mu}$ 2.2 pb $p_T^{\mu} > 10~{\rm GeV}$
- for WW^+ 95.6 fb, 5.9 fb $W>1\,{\rm TeV}$
- small x-section, but luminosity in first 3 years 30 fb⁻¹, important signal
- other production: sfermion pairs, charged Higgs pairs

Atlas Forward Proton (AFP) detectors

- existing forward detectors: LUCID, ALFA, ZDC not sensitive to hard diffraction
- new project: FP220 and FP420 detectors (similar project at CMS)
- scattered protons detected by silicon pixel detectors few mm from beam
- timing detectors few ps resolution

Footprint of $\xi \neq 0$ events

+ $\xi \neq 0$ - beam proton losing momentum, $\xi_i = (|\mathbf{p}_{bi}| - |\mathbf{p}_i|)/|\mathbf{p}_{bi}|$

FP220

- positive ΔX protons scattered outside the cryogenic ring
- most of the physics covered with a detector of the size 2 cm $10\,\mu{\rm m}$ resolution in x
- reconstruction
 from proton track in two stations 216 m and 224 m
 - reconstruct ξ , t, ϕ

FP420

- protons scattered to negative ΔX
- but detector must be placed in between two beam pipes

Fast Timing

- up to 32 interactions/bunch crossing
- measure time of arrival of the proton precisely $\sim 10\,{\rm ps}\sim 3\,{\rm mm}\to{\rm constrain}$ the position of vertex from which the proton originates
- achieved in lab: Gastof $\sim 5\,\mathrm{ps},\,\mathrm{Quartic}\,\sim 15\,\mathrm{ps}$

Quartic (FNAL, Alberta, UTA)

GASTOF (Louvain)

$\gamma\gamma \rightarrow WW/ZZ$ at high lumi

Focusing on two application of two-photon production:

- Measurement of two-photon WW production
- Search for anomalous W/Z couplings to photon

Phenomenological study: considered processes

signal

- \bullet two-photon WW/ZZ: two leptons e/μ from leptonic WW/ZZ decays background
 - two-photon dileptons: leptons exactly back-to-back
 - leptons via double pomeron exchange (DPE): hard diffraction, probing structure of the pomeron
 - WW via double pomeron exchange: same

- diffractive and exclusive processes in $\mathsf{FPMC}+\mathsf{fast}\;\mathsf{ATLAS}\;\mathsf{standalone}\;$ simulation

Measurement of SM two-photon WW

- high lumi used, $\gamma\gamma \rightarrow WW$ can be measured, pure leptonic decays
- $0.0015 < \xi < 0.15, 160 < W < 500 \text{ GeV}$

Effective Lagrangian - quartic couplings

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

- modifying the direct quartic amplitude
- in \mathcal{L}_6^0 indices of F and W, Z decoupled, term can be interpreted as effective exchange of a scalar
- appears naturally in Higgs-less theories

Total WW and ZZ cross sections

- enhancement of the SM cross section WW: 95.6 fb, ZZ: 0
- notice coupling scale 10^{-6} GeV^2 , OPAL limits $\sim 10^{-2} \text{ GeV}^2$
- any (non)observation can give important constraints on the couplings

Violation of unitarity

- anomalous coupling low energy approximation of new theory
- dimension 6 operators \rightarrow violation of unitarity at high energy
- sensitivities should not be driven by the divergence cause by longitudinal polarization of vector bosons

• introducing form factors by conventional way:

 $a_0^W/\Lambda^2 \rightarrow \frac{a_0^W/\Lambda^2}{(1+W_{\gamma\gamma}/\Lambda_{
m cutoff})^2}$ $\Lambda_{
m cutoff} = 2 \,{
m TeV} \dots$ scale of the new physics

Anomalous quartic coupling - high lumi

- looking for high p_T and high mass signal
- $p_T^{lep1} > 160 \text{ GeV}, \, p_T^{lep2} > 10 \text{ GeV}, \, M_{ll} \notin \langle 80, 100 \rangle, \, \Delta \phi < 3.13, \, E_T > 20 \text{ GeV}$
- $0.0015 < \xi < 0.15, W > 800 \,\mathrm{GeV}$

largest backgrounds

- $\gamma\gamma \to WW$
- $\mathsf{DPE} \rightarrow ll$
- $\sim 1 \ {\rm event} \ {\rm for} \ {\rm 30} \ {\rm fb}^{-1}$

Sensitivities at high luminosity

Couplings	OPAL limits	Sensitivity @ $\mathcal{L} = 30$ (200) fb ⁻¹
	$[{\rm GeV}^{-2}]$	95% CL
a_0^W/Λ^2	[-0.020, 0.020]	$2.6 imes 10^{-6}~(1.4 imes 10^{-6})$
a_C^W/Λ^2	[-0.052, 0.037]	$9.4 imes 10^{-6}$ (5.2 $ imes 10^{-6}$)
a_0^Z/Λ^2	[-0.007, 0.023]	$6.4 imes 10^{-6} \ (2.5 imes 10^{-6})$
a_C^Z/Λ^2	[-0.029, 0.029]	$24 \times 10^{-6} (9.2 \times 10^{-6})$

• improvement of sensitivities up to 4 orders of magnitude with 30 fb⁻¹

 E. Chapon, O. Kepka and C. Royon, Phys.Rev.D81:074003, 2010

Sensitivity to triple couplings

$$\mathcal{L}/g_{WW\gamma} = i(W^+_{\mu\nu}W^{\mu}A^{\nu} - W_{\mu\nu}W^{+\mu}A^{\nu}) + i\kappa^{\gamma}W^+_{\mu}W_{\nu}A^{\mu\nu} + i\frac{\lambda^{\gamma}}{M_W^2}W^+_{\rho\mu}W^{\mu}_{\ \nu}A^{\nu\rho} \Delta\kappa^{\gamma} = \kappa^{\gamma} - 1$$

- $\Delta \kappa^{\gamma}$ signal at low, λ^{γ} signal at high $W=\sqrt{s\xi_{1}\xi_{2}}$ mass
- TGC already well constrained from LEP
- Improvement up to a factor of 10 wrt. Tevatron

Couplings	OPAL limits	Sensitivity @ $\mathcal{L} = 30$ (200) fb ⁻¹
	$[{\sf GeV}^{-2}]$	95% CL
$\Delta \kappa^{\gamma}$	[-0.098, 0.1]	[-0.25, 0.16] ([-0.096, 0.057])
λ^γ	[0.044, 0.047]	[-0.052, 0.049] ([-0.023, 0.027])

Summary

- LHC can be used also as a photon-photon collider
- allows to test SM in a unique way in clean exclusive QED process
 quartic couplings discussed appears in Higgs-less models
 (little Higgs model, 5D Higgs-less model, holographic composite model, etc.
 C. Grojean, arXiv:0910.4976)
 - triple gauge coupling also possible (but smaller improvement)
- important step in precision measurement of quartic coupling before ILC
- photon-photon induced processes can be studied at $e^+e^-\,$