The CLIC Power Extraction and Transfer Structure

International Workshop on Linear Colliders
Alessandro Cappelletti for the CLIC team, 20th Oct 2010

CLIC layout

A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high-current, low-energy beam in order to accelerate the low-current main beam to high energy.

Specific features:

1. Large aperture
2. High V_{g}
3. Overmoded
4. 8-slot HOM damping
5. High peak RF power (135 MW)
6. High current (100 A)
7. Low surface E field
8. Special coupler
9. Milling technology
10. Body assembly with clamping

PETS parameters

- Frequency $=11.9942 \mathrm{GHz}$
- Aperture = 23 mm
- Active length $=0.213 \mathrm{~m}$ (34 cells)
- Period $=6.253 \mathrm{~mm}\left(90^{\circ} / \mathrm{cell}\right)$
- Iris thickness $=2 \mathrm{~mm}$
- Slot width $=2.2 \mathrm{~mm}$
- $\mathrm{R} / \mathrm{Q}=2222 \Omega / \mathrm{m}$
- $\mathrm{V}_{\mathrm{g}}=0.459 \mathrm{C}$
- $\mathrm{Q}=7200$
- E surf. (135 MW)=56 MV/m
- H surf. (135 MW) $=0.08 \mathrm{MA} / \mathrm{m}$

PETS machining and tolerances issues

PETS machining test bar

Fabrication and assembly errors can detune the PETS synchronous frequency and affect the power production.

Metrology results translated $\quad P=\left.I^{2} F_{b}{ }^{2} \omega_{0} \frac{R / Q}{V_{g} 4}\right|_{\text {into frequency error: }} ^{\left.\int_{0}^{L} \exp \left(i \frac{\Delta \omega}{2 c} \frac{1-\beta}{\beta} z\right) d z\right|^{2}}$
A fabrication accuracy of $\pm 20 \mu \mathrm{~m}$ is sufficient and can be achieved with conventional 3D milling machines.

If the hypothetical PETS were made of such 8 identical bars, the expected power losses would be 0.03%; impedance, V_{g} and frequency wouldn't be significantly affected.

HOM issues

In big aperture structures, the frequency of the transverse modes is rather close to the operating one. The only way to damp it is to use its symmetry properties.

To perform the HOM damping, we introduce the radial impedance gradient in the slot to create the radial component of the Poynting vector by putting the lossy dielectric material close to the slot opening.

The proper choice of the load configuration with respect to the material properties makes it possible to couple the slot mode to a number of heavily loaded modes in dielectric.

The transverse wake damping in PETS. GDFIDL field animation (by W. Bruns)
The PETS equipped with ceramic loads without losses $(\operatorname{tg} \delta=0)$

The PETS equipped with ceramic loads with losses $(\operatorname{tg} \delta=0.32)$

PETS computations expansion: T3P

Computer simulation is the only method to study the damping performance in the PETS. Benchmarking with different codes is extremely beneficial.

Courtesy of SLAC

The wake simulated with GDFIDL (red) and T3P (blue)

For more details: Arno Candel (SLAC), "Wakefield Computations for CLIC PETS using Parallel T3P-A"

HOM study approach

While the fundamental mode induced by the monopole moment provides RF power, the HOM induced by higher order beam moments lead to unwanted effects (see "Overview and Beam Physics", E. Adli).

The analytical expression for a single HOM is well known:

$$
W_{\perp}(z)=2 q \times K_{\perp} \sin \left(\frac{\omega z}{c}\right) e^{-\frac{\omega z}{2 Q(1-\beta) c}} \times\left\{1-\frac{\beta z}{L(1-\beta)}\right\}
$$

A mode is uniquely identified by a set of 4 parameters:
ω, K, Q, β

TRANSVERSE WAKE

Wake potential carried out by computer simulation. It is what the superposition of single modes results in.
$W_{\perp}(z) \xrightarrow{\mathfrak{B}} Z(f)$

IMPEDANCE (REAL PART)

IMPEDANCE (IMAG PART)

We need to extract the parameters sets for the single modes

TWO-STEP APPROACH...

1. INITIAL GUESS

Wake Start -0.011	Wake End 3.500	Log Y?	Windowing coeff. 0.002	STOP

Freq [GHz]			Amp	\mathbf{Q}-factor	
\#1	$\boldsymbol{\beta}$				
\#1	3.95	10.10	3.40	0.43	
\#2	6.92	13.64	5.50	0.67	
\#3	8.50	13.00	5.00	0.70	
\#4	12.01	340.20	6.82	0.67	
\#5	16.40	195.00	6.30	0.56	
\#6	27.41	194.00	527.00	0.18	
\#7	28.00	20.00	156.00	0.03	
\#8	32.82	154.00	943.00	0.02	

2. BRUTE FORCE REFINEMENT

PETS testing program

RF power sources
External RF power source
Drive beam*

Objective: understanding the limiting factors for the PETS ultimate performance and breakdown trip rate.

- Access to the very high power levels (300 MW) and nominal CLIC pulse length.
- High repetition rate -60 Hz .

PETS high RF power testing @ SLAC (2010)

Average and peak power distributions

After 80h of operation with no breakdown: BDR $<1.2 \times 10^{-7} /$ pulse/PETS

PETS power production inTBTS

PETS consistently produces required RF power for the accelerating structure processing and the two beam acceleration experiments.

PETS ON-OFF operation

ILC, Technical Review Committee, 2003. CLIC feasibility issues, Ranking 1.

Reliability

- In the present CLIC design, an entire drive beam section must be turned off on any fault. CLIC needs to develop a mechanism to turn off only a few structures in the event of a fault

Possible solutions

PETS ON-OFF operation

- extremely broad band ($\sim 4 \mathrm{GHz}$)
a low surface electric field (<45 MV/m)
\square reduced actuators stroke ($\sim \lambda / 4$)
- contact-free

Transmission $=0 \mathrm{~dB}(\mathrm{ON})$

RF network layout*

*See A. Samoshkin's presentation

Remarks and future plans

- So far, 2 PETS for SLAC testing and 2 PETS for CERN testing have been built. More will be coming in the next months (/years).
- Simulation codes have become fundamental in the whole design \& improvement process. We're constantly looking to increase our computational capabilities.
- In the framework of our feasibility study, the test results proved that PETS performed well with respect to the requirements...
- ... which will be important for our Conceptual Design Report (due by the end of the year).

