@

The CLIC Power Extraction
and Transfer Structure

International Workshop on Linear Colliders

Alessandro Cappelletti for the CLIC team, 20" Oct 2010




CLIC layout
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A fundamental element of the CLIC concept is two-beam
acceleration, where RF power is extracted from a high-current,
low-energy beam in order to accelerate the low-current main
beam to high energy.
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Specific features: Qb

1. Large aperture

2. HighV,

3. Overmoded

4. 8-slot HOM damping

5. High peak RF power (135 MW)
6. High current (100 A)
7

8
9.

1

Low surface E field
Special coupler
Milling technology
0.Body assembly with clamping

PETS parameters

* Frequency = 11.9942 GHz
Special matching cell = Aperture = 23 mm
= Active length = 0.213m (34 cells)
» Period = 6.253 mm (909/cell)
* Iris thickness = 2 mm
» Slot width = 2.2 mm
» R/Q =2222 Q/m
Surface H field 3 = Vy=0.459C
£ % =Q =7200
» E surf. (135 MW)= 56 MV/m
* H surf. (135 MW) = 0.08 MA/m

Surface E field




\ 1. For the chosen layout (L, ,7) and the
For the fixed phase R /Q _2 number of PETS per unit, the aperture is
advance and iris  ——— CG uniquely defined (a/1=0.46).
thickness: gr 2. Abigger aperture favors beam dynamics.
-
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PETS machining and tolerances issues

PETS machining test bar
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Fabrication and assembly
errors can detune the PETS
synchronous frequency and
affect the power production.

A fabrication accuracy
of =20 um is sufficient
and can be achieved
with conventional 3D
milling machines.

If the hypothetical PETS were made of such 8 identical bars, the expected power losses would
@ be 0.03%; impedance, V; and frequency wouldn’t be significantly affected.
N




HOM issues &[b

In big aperture structures, the frequency of the transverse modes is rather close to the operating
one. The only way to damp it is to use its symmetry properties.

Transverse modes spectrum
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With the longitudinal slots, the transverse
mode field pattern is heavily distorted. The
new, TEM-like nature of the mode
significantly increases the group velocity.

To perform the HOM damping, we introduce the radial impedance gradient in
the slot to create the radial component of the Poynting vector by putting the
lossy dielectric material close to the slot opening.

The proper choice of the load configuration with respect to the material

properties makes it possible to couple the slot mode to a number of heavily
loaded modes in dielectric.



The transverse wake damping in PETS. GDFIDL field animation (by W. Bruns) |2

The PETS equipped with ceramic loads without losses (tgd=0)

The PETS equipped with ceramic loads with losses (tgd=0.32)




PETS computations expansion: T3P

Computer simulation is the only method
to study the damping performance in
the PETS. Benchmarking with different
codes is extremely beneficial.

Courtesy of SLAC
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The wake simulated with GDFIDL (red) and T3P (blue)
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Distance, m

@N For more details: Arno Candel (SLAC), “Wakefield Computations for CLIC PETS using Parallel T3P-A”
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HOM study approach

While the fundamental mode induced by the monopole moment provides RF power, the HOM induced
by higher order beam moments lead to unwanted effects (see “Overview and Beam Physics”, E. Adli).

The analytical expression for a single HOM is well known:

w7 =2 7. A mode is uniquely identified by a
W, (z) =2gx K sin (—je 2QU-p)e x{l——} s Set Of 4 parameters:
¢ Ld-4) o, K, Q, B

TRANSVERSE WAKE
4

Wake potential carried out by computer
simulation. It is what the superposition of
single modes results in.
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TWO-STEP APPROACH...

Recornsiruction
Wake subset

Reconstruction
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1. INITIAL GUESS
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2. BRUTE FORCE REFINEMENT
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PETS testing program

RF power sources

External RF power source Drive beam*

RF high
power
source
RF
power
in

RF
power
out

R RN
R

Drive
beam

)
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l !
ASTA (SLAC) CTF3 (CERN +l Collaborations)

Objective: understanding the limiting factors || Two beam test stand (CERN + Collaborations)

for the PETS ultimate performance and

breakdown trip rate. Objective: demonstrating the reliable production of the
nominal CLIC RF power level throughout the deceleration of

- Access to the very high power levels (300 the drive beam.

MW) and nominal CLIC pulse length. ] _

+ High repetition rate - 60 Hz. — Test beam line (CERN + Collaborations)

@ Objective: to demonstrate the stable, without losses, beam
A *See I. Syratchev’s and E. Adli’s presentations | transportation in presence of the strong (50%) deceleration.




PETS high RF power testing @ SLAC (2010)
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Low
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PETS consistently produces
required RF power for the
accelerating structure
processing and the two
beam acceleration
experiments.




PETS ON-OFF operation AFn

ILC, Technical Review Committee, 2003. CLIC feasibility issues, Ranking 1.

Reliability
* In the present CLIC design, an entire drive beam section must be turned off on any fault.
CLIC needs to develop a mechanism to turn off only a few structures in the event of a fault

Possible solutions
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PETS ON-OFF operation

o extremely broad band (~4 GHz)
o low surface electric field (< 45 MV/m)
o reduced actuators stroke (~A/4)

o contact-free

Power (to structure)

Power (from PETS)
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COMPACT COUPLER

RF network layout*

MECHANISM
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ON-OFF *See A. Samoshkin’s presentation
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Remarks and future plans

So far, 2 PETS for SLAC testing and 2 PETS for CERN testing

have been built. More will be coming in the next months
(/years).

Simulation codes have become fundamental in the whole
design & improvement process. We’'re constantly looking
to increase our computational capabilities.

In the framework of our feasibility study, the test results
proved that PETS performed well with respect to the
requirements...

... which will be important for our Conceptual Design
Report (due by the end of the year).



