Precision measurements of Little Higgs with T-parity parameters @ ILC

Tohoku Univ Eriko Kato

Masaki Asano Yosuke Takubo,

Keisuke Fujii, Shigeki Matsumoto, Hitoshi Yamamoto

Little Hierarchy problem

There are 2 predictions on where the energy scale of new physics should emerge.

2.Electroweak precision measurement

- Conflict between the 2 energy scales.
- Little Higgs model was proposed!

Λ>10Te

Little Higgs model

<Little Higgs mechanism>

Global Symmetry : SU(5) $f \sim 1 \text{ TeV}$ SO(5) $v \sim <h>$ subgroup : $[SU(2)_{L} \times U(1)_{Y}]^{2} \longrightarrow SU(2)_{L} \times U(1)_{Y} \longrightarrow U(1)_{Y}$

<Higgs mass contribution>

Quadratic divergent terms cancel at 1-loop order Solves Little hierarchy problem

Littlest Higgs with T-Parity model

Heavy gauge bosons acquire mass through global symmetry breaking

- $A_H Z_H W_H$ masses are proportional to f.
- f can be determined through A_HZ_HW_Hmass precision measurements.

Mass measurement of heavy gauge bosons extremely important !!

Selection of model parameters

 $A_H Z_H W_H$ can be produced under CM energy 1TeV.

LHT heavy gauge bosons @LHC

Boson pair production cross section

VEV vs Cross section Largest cross section: W_µW_µ ~100fb Signal : $l l \in (\sim 5 fb)$ و(**bb**) Large background: SM gauge boson tt production 10 Extremely difficult to see. Production of $W_{\mu}W_{\mu}$ 10 10 10 W_H 600 (Б [a]

Reference: Alexander Belyaev, Chuan-ren Chen etal Phys Rev D74,115020

f(GeV)

simulation

<simulation environment> Fast simulator Center mass energy :1TeV Beam polarization 0% Integrated luminosity :500fb⁻¹

<Signal event>

- $e^+e^- \rightarrow Z_H Z_H (99.52 fb)$
 - $-Z_H \rightarrow A_H H$ (branching ratio100%)
 - -A_H is a dark matter candidate
 - -Higgs decays mostly to $H \rightarrow bb(42\%)$
 - → used 4 jet final state as signal.

<background event(4 jet)>

- WW (3069fb)
- tt (192.9fb)
- WWZ (63.86fb)
- vvWW (14.67fb)
- ZZ (202.2fb)
- ZH (17.98fb)
- W_HW_H (108.6fb)

Event reconstruction

- Reconstruct by forcing every event to be a 4 jet event.
- Select reconstructed pair that minimizes χ^2 .

$$\chi_{H}^{2} = \left(\frac{M_{H1} - M_{H}}{\sigma_{M_{H}}}\right)^{2} + \left(\frac{M_{H2} - M_{H}}{\sigma_{M_{H}}}\right)^{2} \qquad M_{H} = 134.0(GeV)$$

Selection criteria

Success in effectively rejecting background

Contour plot of Z_H & A_H

Contou A_H Z_H contour plot

<Z_H A_Hmass solution>

- 2 mass solutions appear
- if we select the true solution ...
- А_н :82.7±3.5GeV(True value81.9GeV)
- $Z_{H}:366.1\pm4.7$ GeV(True value 369.0GeV)

Mean Mass resolution A_{H} 4.2% Z_{H} 1.3% 1σ . \$80 5σ GeV **₹**70 360 True solution 350 False solution We can select the 330 true solution 320⊑ 50 80 100 60 70 By using other modes A_{H} mass (GeV)

Model

$e^+e^- \rightarrow W_H W_H mode$

Used $e^+e^- \rightarrow W_H W_H$ mode to select true mass solution

12

Result of simultaneous fit

<mass resolution>

A_H: 1.3% Z_H: 1.1% W_H: 0.20% All heavy gauge boson mass resolutions improved through simultaneous fit

Model parameter f

Evaluated the measurement accuracy of f

Summary

The Little Higgs with T-Parity model is a new physics model that solves the little hierarchy problem and the dark matter problem.

 $< \sqrt{s} = 1$ TeV: $e^+e^- \rightarrow Z_{H}Z_{H}$ analysis>

2 neighboring mass solutions(A_H, Z_H) were obtained. Necessary to select true solution.

 $<\sqrt{s}=1$ TeV: $e^+e^- \rightarrow Z_H Z_H \& W_H W_H$ simultaneous fit>

Able to select one true mass solution.

Through simultaneous fit all mass resolution improved.

Mass resolution $A_H 1.3\% Z_H 1.1\% W_H 0.20\%$

Vacuum expectation value: f 0.16%