Buried/Charming Higgs

Andreas Weiler (CERN)

International Workshop on Linear Colliders (ECFA-CLIC-ILC Joint Meeting) 20/10/2010 Geneva

o Indirect tests suggest light scalar < 158 GeV (95%cl)

o Indirect tests suggest light scalar < 158 GeV (95%cl)

o Indirect tests suggest light scalar < 158 GeV (95%cl) Chanowitz, 0806.0890 o without A^b_{FB} , $m_H = 55^{+32}_{-21} \,\mathrm{GeV}$, better χ^2

Standard Higgs decays

o Coupling ~ mass, decays into heaviest available o A light Higgs dominantly decays to $h \rightarrow bb$

Standard Higgs decays

o Coupling ~ mass, decays into heaviest available o A light Higgs dominantly decays to $h \rightarrow bb$

Light Higgs' Small Width

The Higgs Width

The Higgs Width

Could we have missed a light Higgs at LEP?

Suppressing SM BR to ~ 20 % is enough

VS.

have to assume $m_\eta < 2m_b$

Non-standard Higgs decays

Decay Channel	Limit
$h \rightarrow b\overline{b}$ or $\tau\overline{\tau}$	115 GeV
$h \rightarrow jj$	113 GeV
$h \rightarrow WW^*$ or ZZ^*	110 GeV
$h ightarrow\gamma\gamma$	117 GeV
$h o ot\!$	114 GeV
h ightarrow AA ightarrow 4b	110 GeV
$h ightarrow {\it AA} ightarrow {\it 4} au, {\it 4c}, {\it 4g}$	86 GeV
$h \rightarrow anything$	82 GeV

Note, constraints on 4 body decays (except 4c and 4g) almost as strong as SM Higgs mass limit.

Non-standard Higgs decays

Decay Channel	Limit	
$h \rightarrow b\overline{b}$ or $\tau\overline{\tau}$	115 GeV	
h ightarrow jj	113 GeV	
$h \rightarrow WW^*$ or ZZ^*	110 GeV	
$h ightarrow\gamma\gamma$	117 GeV	ALEPH/K. Cranmer et al.
$h ightarrow ot\!$	114 GeV	arXiv 10030705 [her ev]
h ightarrow AA ightarrow 4b	110 GeV	
h ightarrow AA ightarrow 4 au, 4c, 4g		ightarrow 4 au : 107 GeV
$h \rightarrow anything$	82 GeV	

ongoing, more later

Note, constraints on 4 body decays (except 4c and 4g) almost as strong as SM Higgs mass limit.

The Higgs mass in MSSM

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2 - (b H_u^0 H_d^0 + \text{c.c.}) + \frac{1}{8}(g^2 + g'^2)(|H_u^0|^2 - |H_d^0|^2)^2.$$

At tree-level: firm upper bound on the lightest of the two CP even Higgs bosons

 $m(h^0) < M_Z$

Experimentally: m

 $m(h^0) > 114 \,\mathrm{GeV}$

Either MSSM is wrong or loop correction large (75%).

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{\text{stop}}^2}{m_t^2}$

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{\text{stop}}^2}{m_t^2}$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

Tuning in the MSSM

$$m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1} \approx -m_{H_u}^2$$

Tuning in the MSSM

$$m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

 $\delta \eta$

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2\beta - m_{H_d}^2}{\tan^2\beta - 1} \approx -m_{H_u}^2$$
$$m_{H_u}^2(\text{loop}) = -\frac{3y_t^2}{8\pi^2} m_{\text{stop}}^2 \ln \frac{\Lambda^2}{m_{\text{stop}}^2} \approx 600 \cdot \frac{m_Z^2}{2}$$

Tuning in the MSSM $m_{h^0}^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \ln \frac{m_{stop}^2}{m_t^2}$

Negative search at LEP: $m_H > 114 \text{ GeV}$ Therefore need $m_{stop} \sim O(1 \text{ TeV})$. But at minimum,

But at minimum, $\frac{m_Z^2}{2} = \frac{|\mu|^2}{|\mu|^2} \frac{m_{H_u}^2}{\tan^2 \mu} \frac{\tan^2 \beta - m_{H_d}^2}{\tan^2 \mu} \approx -m_{H_u}^2$ $\delta m_{Hu}^2(\text{loop}) = -\frac{3y_t^2}{8\pi^2} m_{\text{stop}}^2 \ln \frac{\pi^2}{m_{\text{stop}}^2} \approx 600 \cdot \frac{m_Z^2}{2}$

Giudice, Rattazzi '06

Naturalness of the MSSM after LEP2?

Who ordered the η ?

Why is the η so light?

Higgs as a pseudo-Goldstone Boson

Higgs as pGB of SU(3)/SU(2) at $f \approx (2-3) \times v$

3 - 3 = 5 broken generators

5 = 4 (Higgs doublet) + 1 (singlet)

Inspired by QCD

 ρ, \ldots

mass protected by global symmetry

 $\pi \to \pi + \alpha$

Inspired by QCD

 $[\rho, \ldots$

Potential tilted: due to quark masses and gauging of EM $GB \rightarrow \rho GB$

 $m_{\pi^{\pm}}^2 \approx \frac{\alpha_{em}}{4\pi} \Lambda_{QCD}^2$

Inspired by QCD

Potential tilted: due to quark masses and gauging of EM $GB \rightarrow \rho GB$

 $m_{\pi^{\pm}}^2 \approx \frac{\alpha_{em}}{4\pi} \Lambda_{QCD}^2$

Translate to EW sector $\Lambda_{strong} \sim \frac{4\pi v}{\lambda_{t}} \sim 1 \text{TeV}$ too low! \rightarrow collective breaking

pGB's: Higgs + singlet

Parameterization of Higgses: GB of $SU(3) \rightarrow SU(2)$

$$\Sigma_{u,d}(\mathbf{3}_{\pm \mathbf{1/3}}) = e^{iT^a G^a} \begin{pmatrix} 0\\ 0\\ f_{u,d} \end{pmatrix}, \quad T^a G^a = \frac{1}{f} \begin{pmatrix} 0 & H\\ H^{\dagger} & \eta \end{pmatrix}$$

$$h \to \eta \eta \text{ vs. } h \to bb$$

Goldstone interaction fixed by symmetry

$$\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$$

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$

η $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f} \quad \blacksquare$ higgs η

η $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$ higgs η 1 LEP **(b)** $\sqrt{s} = 91-210 \text{ GeV}$ H \rightarrow bb 95% CL limit on ξ^2 -1 10 -2 10 20 **40** 60 80 100 120 m_H(GeV/c²)

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$

η ŋ

higgs

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\Box}$ $\sqrt{2}f$

η n

higgs

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\Box}$ $\sqrt{2f}$

η higgs ŋ

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\overline{}}$ $\sqrt{2}$

η higgs ŋ

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\overline{}}$ $\sqrt{2}$

η higgs ŋ

 $\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}}$ $\sqrt{2}$

<section-header>

n

η

higgs

The story so far... The story so far... o Found pGB Higgs model o Higgs + singlet η , Higgs decays mostly into η . Higgs and **n** mass? LEP? η o What happens t \mathcal{B} singlet ? η η b, au, c, gη MN $b\,, au\,,\,c\,,\,g$ mh higgs n , May 14, 2010

The story so far... The story so far... o Found pGB Higgs model o Higgs + singlet η , Higgs decays mostly into η . Higg Need concrete model ! o Wha Matter embedding, dynamics, ... 1) Supersymmetric theory , g2) Composite Higgs (talks by → Rattazzi, Sundrum, Grojean)

л, May 14, <u>2010</u>

Susy embedding: theoretical virtues

Susy embedding: theoretical virtues

o Quartic (D-terms) for doublet only $m_\eta \ll m_{h^0}$ o Quadratic term protected, finite & no tuning

Simplest super-Little Higgs

Easiest SUSY embedding of LH is ''simplest little Higgs'' Kaplan, Schmaltz '03; Schmaltz '04

Extend $SU(2)_W \times U(1)_Y$ to $SU(3)_W \times U(1)_X$

Higgs doublets become SU(3) triplets $H_{u,d} \rightarrow \mathcal{H}_{u,d} = (H_{u,d}, S_{u,d}) = 3, \overline{3}$ and receive cloned partners $\Phi_{u,d} = 3, \overline{3}$

F-Term respects $SU(3)_1 \times SU(3)_2$ symmetry

 $\mathcal{W} = \mathcal{W}_{\Phi} + \mathcal{W}_{\mathcal{H}}$

Higgs potential

Both f/F and v/f radiatively generated through bottomtop loops in Coleman-Weinberg. Triplet potential

$$m_{\mathcal{H}_u}^2 \approx -\frac{3y_2^2 \sin^2 \beta}{2\pi^2} M_{\text{soft}}^2 \log(\Lambda/M_T)$$

$$\lambda_{\mathcal{H}_u} \approx \frac{3y_2^4 \sin^4 \beta}{8\pi^2} \log((M_{\text{soft}}^2 + M_T^2)/M_T^2)$$

physical (*m_{Higgs}*)²

 $(m_{Hu})^2$ finite !

$$\begin{split} \Delta m^2 &\approx -\frac{3m_t^2}{8\pi^2 v_{EW}^2} \left[M_T^2 \log \frac{M_{\text{soft}}^2 + M_T^2}{M_T^2} + M_{\text{soft}}^2 \log \frac{M_{\text{soft}}^2 + M_T^2}{M_{\text{soft}}^2} \right] \\ m_h^2 &= \left(1 - \frac{v_{EW}^2}{f^2} \right) \left\{ m_Z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v_{EW}^2} \left[\log \left(\frac{M_{\text{soft}}^2 M_T^2}{m_t^2 (M_{\text{soft}}^2 + M_T^2)} \right) - 2\frac{M_{\text{soft}}^2}{M_T^2} \log \left(\frac{M_{\text{soft}}^2 + M_T^2}{M_{\text{soft}}^2} \right) \right] \right\} \end{split}$$

Higgs potential

Both f/F and v/f radiatively generated through bottomtop loops in Coleman-Weinberg. Triplet potential

$$m_{\mathcal{H}_u}^2 \approx -\frac{3y_2^2 \sin^2 \beta}{2\pi^2} M_{\text{soft}}^2 \log(\Lambda/M_T)$$

$$\lambda_{\mathcal{H}_u} \approx \frac{3y_2^4 \sin^4 \beta}{8\pi^2} \log((M_{\text{soft}}^2 + M_T^2)/M_T^2)$$

physical (*m_{Higgs}*)²

 $(m_{Hu})^2$ finite !

$$\begin{split} \Delta m^2 &\approx -\frac{3m_t^2}{8\pi^2 v_{EW}^2} \left[M_T^2 \log \underbrace{\frac{M_{\rm soft}^2 + M_T^2}{M_T^2}}_{M_T^2} + M_{\rm soft}^2 \log \underbrace{\frac{M_{\rm soft}^2 + M_T^2}{M_{\rm soft}^2}}_{M_{\rm soft}^2} \right] \\ m_h^2 &= \left(1 - \frac{v_{EW}^2}{f^2} \right) \left\{ m_Z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v_{EW}^2} \left[\log \left(\frac{M_{\rm soft}^2 M_T^2}{m_t^2 (M_{\rm soft}^2 + M_T^2)} \right) - 2\frac{M_{\rm soft}^2}{M_T^2} \log \left(\frac{M_{\rm soft}^2 + M_T^2}{M_{\rm soft}^2} \right) \right] \right\} \end{split}$$

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta \sim$ (mixing with heavy partner)

	non-flipped	flipped
	Buried	Charming
Тор	$ ilde{y}_t \sim rac{m_t^3}{\sqrt{2}v_{EW}^2 f} \sim 0.2$	$ ilde{y}_t \sim rac{m_t}{\sqrt{2}f} \sim 0.2$
Charm	$\widetilde{y}_c \sim rac{m_c^{3^{-11}}}{\sqrt{2}v_{FW}^2 f} \sim 10^{-9}$	$ ilde{y}_c \sim rac{m_c}{\sqrt{2}f} \sim 10^{-3}$
В	$ ilde{y}_b \sim rac{m_b m_t^2}{\sqrt{2} v_{FW}^2 f} \sim 10^{-2}$	$ ilde{y}_b\sim rac{m_b^3}{\mu_V^2 f}\sim 10^{-12}$
Tau	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$	$ ilde{y}_ au \sim rac{m_ au^3 f}{\sqrt{2} f v_{EW}^2} \sim 10^{-8}$

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta \sim$ (mixing with heavy partner)

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta \sim$ (mixing with heavy partner)

m_{eta}< 2m_b

n in 3rd component of Higgs triplet SM fermions mostly in 1,2 component of Quark triplet \rightarrow Coupling $i(\bar{f}\gamma_5 f)\eta \sim$ (mixing with heavy partner) Extra suppression

Eta decays - buried Higgs

 $\Gamma_{\eta \to gg} = (N_c^2 - 1) \frac{|\kappa^g|^2}{\pi} m_\eta^3$

Susy pGB: surprising result

Bellazini, Csaki, Falkowski, AW

 $h \rightarrow 4$ gluon or $h \rightarrow 4$ charm

LHC Signals

How are we going to see the Higgs?
 Higgs Impostor

Using Jet-substructure to unbury the Higgs

Jet substructure: ttH

Falkowski,et al.

		$m_h = 80 \text{ GeV}$	$m_h = 100 \text{ GeV}$	$m_h = 120 \text{ GeV}$
$pp \rightarrow hW$	S/\sqrt{B}	6.6 (4.8)	7.8(5.7)	7.0~(6.9)
	S/B	$0.34\ (0.067)$	0.90~(0.11)	$0.80 \ (0.24)$
$pp \rightarrow h t \bar{t}$	S/\sqrt{B}	6.1 (5.9)	6.1 (5.7)	7.1 (7.1)
	S/B	$1.1 \ (0.97)$	1.3(1.1)	2.5(2.5)

Can unbury the buried Higgs. (S/B for 100 1/fb)

Jet Substructure II: hW-evjj _{Chen, Nojiri, Sreethawong}

shown here: $m_{\eta} = 4 \text{GeV} (m_{\eta} = 8 \text{GeV} \text{ slightly harder})$

Jet Substructure II: hW-evjj Chen, Nojiri, Sreethawong

shown here: $m_{\eta} = 4 \text{GeV} (m_{\eta} = 8 \text{GeV} \text{ slightly harder})$

Jet Substructure II: hW-evjj Chen, Nojiri, Sreethawong

shown here: $m_{\eta} = 4 \text{GeV} (m_{\eta} = 8 \text{GeV} \text{ slightly harder})$

Jet algorithm	σ_S (fb)	S/\sqrt{B}
CA	1.13	7.09
KT	0.97	7.03

Table 4: Signal cross section and statistical significance after all cuts in the dijet invariant mass window 110 GeV $\leq m_{jj} \leq$ 130 GeV for $\mathcal{L} = 30$ fb⁻¹ at the LHC.

Higgs Impostor

Higgs Impostor Bellazini, Csaki, Falkowski, AW

$$\mathcal{H}_u \approx (f + r/\sqrt{2}) \begin{pmatrix} 0\\ \sin((\tilde{v} + h/f))\\ \cos((\tilde{v} + h/f)) \end{pmatrix}$$

 $m_r^2 \approx 4 \lambda_{\mathcal{H}} f^2 \sim 350 \text{ GeV}$

It Couples like the Higgs but suppressed

 $g_{rVV} = g_{hVV}^{SM} \times \left(\frac{v_{EW}}{f} \right) \approx \frac{1}{2} \times g_{hVV}^{SM}$

easily visible @ LHC: $gg \rightarrow r \rightarrow ZZ \rightarrow 4l$

$m_r^2 \approx 4\lambda_{\mathcal{H}} f^2 \sim 350 \,\,\mathrm{GeV}$

It Couples like the Higgs but suppressed

 $g_{rVV} = g_{hVV}^{SM} \times \left(v_{EW} / f \right) \approx \frac{1}{2} \times g_{hVV}^{SM}$

easily visible @ LHC: $gg \rightarrow r \rightarrow ZZ \rightarrow 4l$

Meanwhile, the analysis of ALEPH data is ongoing...

Summary

o The Higgs search is 'at risk' because the Higgs width is very sensitive to new light unseen physics.

o Higgs can be below SM LEP bound (90 GeV)
o Higgs buried in QCD background (subjets & detailed LEP analysis in progress)
o Higgs impostor predicted

higgs