Buried/Charming Higgs

Andreas Weiler (CERN)

International Workshop on Linear Colliders

$$
\begin{gathered}
\text { (ECFA-CLIC-ILC Joint Meeting) } \\
\text { 20/10/20 } 0 \text { Geneva }
\end{gathered}
$$

Preview

gluon or charm

$h \rightarrow 4$ gluon or $h \rightarrow 4$ charm

Higgs @ LEP

Gfitter '08

o Indirect tests suggest light scalar < $158 \mathrm{GeV}(95 \% \mathrm{cl})$

o Indirect tests suggest light scalar < $158 \mathrm{GeV}(95 \% \mathrm{cl})$

- Indirect tests suggest light scalar < $158 \mathrm{GeV}(95 \% \mathrm{cl})$ Chanowitz, 0806.0890

O without $A_{F B}^{b}, \quad m_{H}=55_{-21}^{+32} \mathrm{GeV}$, better χ^{2}

Standard Higgs decays

Higgs decay branching ratios

- Coupling ~ mass, decays into heaviest available - A light Higgs decays to $h \rightarrow b b$

Standard Higgs decays

- Coupling ~ mass, decays into heaviest available - A light Higgs decays to $h \rightarrow b b$

Light Higgs’ Small Width

$h \cdots \cdots \lll \lll \ll$
 $y_{b}\left(m_{h}\right) \sim \frac{1}{60}$

$\Gamma_{h \rightarrow b \bar{b}} \sim y_{b}^{2}$

The Higgs Width

The Higgs Width

Could we have missed a light Higgs at LEP?

Suppressing SM BR to
 ~ 20 \%
 is enough

Example: MSSM + singlet η

Dermisek \& Gunion '06
higgs
b
VS.

Example: MSSM + singlet η

Dermisek \& Gunion '06
higgs

VS.
higgs
η

Example: MSSM + singlet η

Dermisek \& Gunion '06

Example: MSSM + singlet η

Dermisek \& Gunion '06

Non-standard Higgs decays

Decay Channel	Limit
$h \rightarrow b \bar{b}$ or $\tau \bar{\tau}$	115 GeV
$h \rightarrow j j$	113 GeV
$h \rightarrow W W^{*}$ or Z^{*}	110 GeV
$h \rightarrow \gamma \gamma$	117 GeV
$h \rightarrow \notin$	114 GeV
$h \rightarrow A A \rightarrow 4 b$	110 GeV
$h \rightarrow A A \rightarrow 4 \tau, 4 c, 4 g$	86 GeV
$h \rightarrow$ anything	82 GeV

Note, constraints on 4 body decays (except 4c and 4 g) almost as strong as SM Higgs mass limit.

Non-standard Higgs decays

Decay Channel	Limit
$h \rightarrow b \overline{\bar{b}}$ or $\tau \bar{\tau}$	115 GeV
$h \rightarrow j j$	113 GeV
$h \rightarrow W W^{*}$ or $Z Z^{*}$	110 GeV
$h \rightarrow \gamma \gamma$	117 GeV
$h \rightarrow \neq$	114 GeV
$h \rightarrow A A \rightarrow 4 b$	110 GeV
$h \rightarrow A A \rightarrow 4 \tau, 4 c, 4 g$	82 GeV
$h \rightarrow$ anything	

ALEPH/K. Cranmer et al. arXiv: 1003.0705 [hep-ex]

```
->\tau : I07 GeV
```

ongoing, more later

Note, constraints on 4 body decays
(except 4c and 4 g) almost as strong as
SM Higgs mass limit.

The Higgs mass in MSSM

$$
\begin{aligned}
V= & \left(|\mu|^{2}+m_{H_{u}}^{2}\right)\left|H_{u}^{0}\right|^{2}+\left(|\mu|^{2}+m_{H_{d}}^{2}\right)\left|H_{d}^{0}\right|^{2}-\left(b H_{u}^{0} H_{d}^{0}+\text { c.c. }\right) \\
& +\frac{1}{8}\left(g^{2}+g^{2}\right)\left(\left|H_{u}^{0}\right|^{2}-\left|H_{d}^{0}\right|^{2}\right)^{2} .
\end{aligned}
$$

At tree-level: firm upper bound on the lightest of the two CP even Higgs bosons

$$
m\left(h^{0}\right)<M_{Z}
$$

Experimentally: $\quad m\left(h^{0}\right)>114 \mathrm{GeV}$
Either MSSM is wrong or loop correction large (75\%).

$$
\begin{aligned}
& \text { Tuning in the MSSM } \\
& m_{h^{0}}^{2} \approx m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 m_{t}^{4}}{4 \pi^{2} v^{2}} \ln \frac{m_{\text {stop }}^{2}}{m_{t}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tuning in the MSSM } \\
& m_{h^{0}}^{2} \approx m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 m_{t}^{4}}{4 \pi^{2} v^{2}} \ln \frac{m_{\text {stop }}^{2}}{m_{t}^{2}}
\end{aligned}
$$

Negative search at LEP: $\mathrm{m}_{\mathrm{H}}>114 \mathrm{GeV}$
Therefore need $m_{\text {stop }} \sim O(I T e V)$.
But at minimum,

$$
\begin{aligned}
& \text { Tuning in the MSSM } \\
& m_{h^{0}}^{2} \approx m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 m_{t}^{4}}{4 \pi^{2} v^{2}} \ln \frac{m_{\text {stop }}^{2}}{m_{t}^{2}}
\end{aligned}
$$

Negative search at LEP: $\mathrm{mH}_{\mathrm{H}}>114 \mathrm{GeV}$
Therefore need $m_{\text {stop }} \sim O(I T e V)$.
But at minimum,

$$
\frac{m_{Z}^{2}}{2}=-|\mu|^{2}-\frac{m_{H_{u}}^{2} \tan ^{2} \beta-m_{H_{d}}^{2}}{\tan ^{2} \beta-1} \approx-m_{H_{u}}^{2}
$$

$$
\begin{aligned}
& \text { Tuning in the MSSM } \\
& m_{h^{0}}^{2} \approx m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 m_{t}^{4}}{4 \pi^{2} v^{2}} \ln \frac{m_{\text {stop }}^{2}}{m_{t}^{2}}
\end{aligned}
$$

Negative search at LEP: $\mathrm{mH}_{\mathrm{H}}>114 \mathrm{GeV}$
Therefore need $m_{\text {stop }} \sim O(I T e V)$.
But at minimum,

$$
\begin{gathered}
\frac{m_{Z}^{2}}{2}=-|\mu|^{2}-\frac{m_{H_{u}}^{2} \tan ^{2} \beta-m_{H_{d}}^{2}}{\tan ^{2} \beta-1} \approx-m_{H_{u}}^{2} \\
\delta m_{H u}^{2}(\text { loop })=-\frac{3 y_{t}^{2}}{8 \pi^{2}} m_{\text {stop }}^{2} \ln \frac{\Lambda^{2}}{m_{\text {stop }}^{2}} \approx 600 \cdot \frac{m_{Z}^{2}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Tuning in the MSSM } \\
& m_{h^{0}}^{2} \approx m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 m_{t}^{4}}{4 \pi^{2} v^{2}} \ln \frac{m_{\text {stop }}^{2}}{m_{t}^{2}}
\end{aligned}
$$

Negative search at LEP: $\mathrm{mH}_{\mathrm{H}}>114 \mathrm{GeV}$
Therefore need $m_{\text {stop }} \sim O(I T e V)$.
But at minimum,

$$
\begin{gathered}
\frac{m_{Z}^{2}}{2}=-|\mu|^{2} \frac{m_{H}^{2}}{2} \tan ^{2} \beta-m_{H_{d}}^{2} \\
\delta m_{H u}^{2}(\text { loop })=-\frac{3 y_{t}^{2}}{8 \pi^{2}} m_{\text {stop }}^{2} \ln \frac{\Lambda_{u}}{m_{\text {stop }}^{2}} \approx 600 \cdot \frac{m_{Z}^{2}}{2}
\end{gathered}
$$

Naturalness of the MSSM after LEP2?

Who ordered the η ?

Why is the η so light?
higgs
η

Higgs as a pseudo-Goldstone Boson

Higgs as pGB of $\mathrm{SU}(3) / \mathrm{SU}(2)$ at $f \approx(2-3) \times v$
8 - $\mathbf{3}=\mathbf{5}$ broken generators
$\mathbf{5}=\mathbf{4}$ (Higgs doublet) $+\boldsymbol{I}$ (singlet)

Inspired by QCD

靑
mass protected by global symmetry

$$
\pi \rightarrow \pi+\alpha
$$

Inspired by QCD

Inspired by QCD

pGB's: Higgs + singlet

Parameterization of Higgses:
 GB of $\mathrm{SU}(3) \rightarrow \mathrm{SU}(2)$

$$
\Sigma_{u, d}\left(\mathbf{3}_{ \pm 1 / 3}\right)=e^{i T^{a} G^{a}}\left(\begin{array}{c}
0 \\
0 \\
f_{u, d}
\end{array}\right), \quad T^{a} G^{a}=\frac{1}{f}\left(\begin{array}{cc}
0 & H \\
H^{\dagger} & \eta
\end{array}\right),
$$

$$
h \rightarrow \eta \eta \text { vs. } h \rightarrow b b
$$

Goldstone interaction fixed by symmetry

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

vs. higgs η

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

higgs
η

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

higgs

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

higgs

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

higgs

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

$$
\mathcal{L}_{h \eta^{2}} \approx-h\left(\partial_{\mu} \eta\right)^{2} \frac{\tan (\tilde{v} / f)}{\sqrt{2} f}
$$

$f \leq 400 \mathrm{GeV}$

So far...

o Found pGB Higgs model
o Higgs + singlet η, Higgs decays mostly into η.
Higgs and η mass? LEP?
o What happens to singlet?

So far...

o Found pGB Higgs model
o Higgs + singlet η, Higgs decays mostly into η. Hige
o Wha
Need concrete model!
Matter embedding, dynamics, ...

1) Supersymmetric theory
2) Composite Higgs (talks by
\rightarrow Rattazzi, Sundrum, Grojean)

Susy embedding: theoretical virtues

Susy embedding: theoretical virtues

- Quartic (D-terms) for doublet only $m_{\eta} \ll m_{h^{0}}$
o Quadratic term protected, finite \& no tuning

Simplest super-Little Higgs

Easiest SUSY embedding of LH is "simplest little Higgs" Kaplan, Schmaltz '03; Schmaltz '04
Extend $\mathrm{SU}(2) \mathrm{w} \times \mathrm{U}(\mathrm{I}) \mathrm{r}$ to $\mathrm{SU}(3) \mathrm{w} \times \mathrm{U}(\mathrm{I}) \times$
Higgs doublets become SU(3) triplets

$$
H_{u, d} \rightarrow \mathcal{H}_{u, d}=\left(H_{u, d}, S_{u, d}\right)=3, \overline{3}
$$

and receive cloned partners $\quad \Phi_{u, d}=3, \overline{3}$
F-Term respects $\mathrm{SU}(3) 1 \times \mathrm{SU}(3) 2$ symmetry

$$
\mathcal{W}=\mathcal{W}_{\Phi}+\mathcal{W}_{\mathcal{H}}
$$

Higgs potential

Both f / F and v / f radiatively generated through bottomtop loops in Coleman-Weinberg.
Triplet potential

$$
\begin{aligned}
m_{\mathcal{H}_{u}}^{2} & \approx-\frac{3 y_{2}^{2} \sin ^{2} \beta}{2 \pi^{2}} M_{\mathrm{soft}}^{2} \log \left(\Lambda / M_{T}\right) \\
\lambda_{\mathcal{H}_{u}} & \approx \frac{3 y_{2}^{4} \sin ^{4} \beta}{8 \pi^{2}} \log \left(\left(M_{\mathrm{soft}}^{2}+M_{T}^{2}\right) / M_{T}^{2}\right)
\end{aligned}
$$

$\left(m_{H u}\right)^{2}$ finite!

$$
\begin{aligned}
\Delta m^{2} \approx & -\frac{3 m_{t}^{2}}{8 \pi^{2} v_{E W}^{2}}\left[M_{T}^{2} \log \frac{M_{\text {soft }}^{2}+M_{T}^{2}}{M_{T}^{2}}+M_{\text {soft }}^{2} \log \frac{M_{\text {soft }}^{2}+M_{T}^{2}}{M_{\text {soft }}^{2}}\right] \\
m_{h}^{2}= & \left(1-\frac{v_{E W}^{2}}{f^{2}}\right)\left\{m_{Z}^{2} \cos ^{2}(2 \beta)+\frac{3 m_{t}^{4}}{4 \pi^{2} v_{E W}^{2}}\left[\log \left(\frac{M_{\text {soft }}^{2} M_{T}^{2}}{m_{t}^{2}\left(M_{\text {soft }}+M_{T}^{2}\right)}\right)\right.\right. \\
& \left.\left.-2 \frac{M_{\text {soft }}^{2}}{M_{T}^{2}} \log \left(\frac{M_{\text {soft }}^{2}+M_{T}^{2}}{M_{\text {soft }}^{2}}\right)\right]\right\}
\end{aligned}
$$

Higgs potential

Both f / F and v / f radiatively generated through bottomtop loops in Coleman-Weinberg.
Triplet potential

$$
\begin{aligned}
m_{\mathcal{H}_{u}}^{2} & \approx-\frac{3 y_{2}^{2} \sin ^{2} \beta}{2 \pi^{2}} M_{\mathrm{soft}}^{2} \log \left(\Lambda / M_{T}\right) \\
\lambda_{\mathcal{H}_{u}} & \approx \frac{3 y_{2}^{4} \sin ^{4} \beta}{8 \pi^{2}} \log \left(\left(M_{\mathrm{soft}}^{2}+M_{T}^{2}\right) / M_{T}^{2}\right)
\end{aligned}
$$

$\left(\mathrm{m}_{\mathrm{Hu}}\right)^{2}$ finite !

$$
\begin{aligned}
& \Delta m^{2} \approx-\frac{3 m_{t}^{2}}{8 \pi^{2} v_{E W}^{2}}\left[M_{T}^{2} \log \frac{M_{\text {soft }}^{2}+M_{T}^{2}}{M_{T}^{2}}+M_{\text {soft }}^{2} \log \frac{M_{\text {sot }}^{2}+M_{T}^{2}}{M_{\text {soft }}^{2}}\right] \\
& m_{h}^{2}=\left(1-\frac{v_{E W}^{2}}{f^{2}}\right)\left\{m_{Z}^{2} \cos ^{2}(2 \beta)+\frac{3 m_{t}^{4}}{4 \pi^{2} v_{E W}^{2}}\left[\log \left(\frac{M_{\text {off }}^{2} M_{T}^{2}}{m_{t}^{2}\left(M_{\text {sot }}^{2}+M_{T}^{2}\right)}\right)\right.\right. \\
& \left.\left.-2 \frac{M_{\text {soft }}^{2}}{M_{T}^{2}} \log \left(\frac{M_{\text {soft }}^{2}+M_{T}^{2}}{M_{\text {soft }}^{2}}\right)\right]\right\}
\end{aligned}
$$

Eta fermion coupling

η in 3rd component of Higgs triplet
SM fermions mostly in I,2 component of Quark triplet
\rightarrow Coupling $i\left(\bar{f} \gamma_{5} f\right) \eta \sim$ (mixing with heavy partner)
non-flipped flipped

Eta fermion coupling

η in 3rd component of Higgs triplet
SM fermions mostly in I,2 component of Quark triplet
\rightarrow Coupling $i\left(\bar{f} \gamma_{5} f\right) \eta \sim$ (mixing with heavy partner)
non-flipped flipped

Eta fermion coupling

η in 3rd component of Higgs triplet
SM fermions mostly in I,2 component of Quark triplet
\rightarrow Coupling $i\left(\bar{f} \gamma_{5} f\right) \eta \sim$ (mixing with heavy partner)

Eta fermion coupling

η in 3rd component of Higgs triplet
SM fermions mostly in I,2 component of Quark triplet
\rightarrow Coupling $i\left(\bar{f} \gamma_{5} f\right) \eta \sim$ (mixing with heavy partner)

$m_{\text {eta }}<2 m_{b}$

Eta decays - buried Higgs

$$
\Gamma_{\eta \rightarrow g g}=\left(N_{c}^{2}-1\right) \frac{\left|\kappa^{g}\right|^{2}}{\pi} m_{\eta}^{3}
$$

Susy pGB: surprising result

Bellazini, Csaki, Falkowski, AW
Anomaly freedom \& global symmetry structure fixes phenomenology

$h \rightarrow 4$ gluon or $h \rightarrow 4$ charm

LHC Signals

1) How are we going to see the Higgs?
2) Higgs Impostor

Using Jet-substructure to unbury the Higgs

Jet substructure: ttH

Falkowski,et al.

		$m_{h}=80 \mathrm{GeV}$	$m_{h}=100 \mathrm{GeV}$	$m_{h}=120 \mathrm{GeV}$
$p p \rightarrow h W$	S / \sqrt{B}	$6.6(4.8)$	$7.8(5.7)$	$7.0(6.9)$
	S / B	$0.34(0.067)$	$0.90(0.11)$	$0.80(0.24)$
$p p \rightarrow h t \bar{t}$	S / \sqrt{B}	$6.1(5.9)$	$6.1(5.7)$	$7.1(7.1)$
	S / B	$1.1(0.97)$	$1.3(1.1)$	$2.5(2.5)$

Can unbury the buried Higgs. (S/B for 100 I/fb)

Jet Substructure II: hW \rightarrow evjj

Chen, Nojiri, Sreethawong
shown here: $m_{\eta}=4 \mathrm{GeV}$ ($m_{\eta}=8 \mathrm{GeV}$ slightly harder)

Jet Substructure II: hW \rightarrow evjj

Chen, Nojiri, Sreethawong
shown here: $m_{\eta}=4 \mathrm{GeV}$ ($m_{\eta}=8 \mathrm{GeV}$ slightly harder)

Jet Substructure II: hW \rightarrow evjj

Chen, Nojiri, Sreethawong
shown here: $m_{\eta}=4 \mathrm{GeV}$ ($m_{\eta}=8 \mathrm{GeV}$ slightly harder)

Jet algorithm	$\sigma_{S}(\mathrm{fb})$	S / \sqrt{B}
CA	1.13	7.09
KT	0.97	7.03

Table 4: Signal cross section and statistical significance after all cuts in the dijet invariant mass window $110 \mathrm{GeV} \leq m_{j j} \leq$ 130 GeV for $\mathcal{L}=30 \mathrm{fb}^{-1}$ at the LHC.

Higgs Impostor

Higgs Impostor

Bellazini, Csaki, Falkowski, AW

$$
\begin{gathered}
\mathcal{H}_{u} \approx(f+r / \sqrt{2})\left(\begin{array}{c}
0 \\
\sin ((\tilde{v}+h / f)) \\
\cos ((\tilde{v}+h / f))
\end{array}\right) \\
m_{r}^{2} \approx 4 \lambda_{\mathcal{H}} f^{2} \sim 350 \mathrm{GeV}
\end{gathered}
$$

It Couples like the Higgs but suppressed

$$
g_{r V V}=g_{h V V}^{S M} \times\left(v_{E W} / f\right) \approx \frac{1}{2} \times g_{h V V}^{S M}
$$

easily visible @ LHC: $g g \rightarrow r \rightarrow Z Z \rightarrow 4 l$

Bellazini, Csaki, Falkowski, AW

$$
\begin{aligned}
& \mathcal{H}_{u} \approx(f+r / \sqrt{2}) \\
& \quad m_{r}^{2} \approx 4 \lambda_{\mathcal{H}} f^{2} \sim 350 \mathrm{GeV}
\end{aligned}
$$

It Couples like the Higgs but suppressed

$$
g_{r V V}=g_{h V V}^{S M} \times\left(v_{E W} / f\right) \approx \frac{1}{2} \times g_{h V V}^{S M}
$$

easily visible @ LHC: $g g \rightarrow r \rightarrow Z Z \rightarrow 4 l$

Meanwhile, the analysis of ALEPH data is ongoing...

Summary

o The Higgs search is 'at risk' because the Higgs width is very sensitive to new light unseen physics.
o Higgs can be below SM LEP bound (90 GeV)

- Higgs buried in QCD background (subjets
\& detailed LEP analysis in progress)

