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NIEL (Non-lonizing Energy Loss)

Conventional wisdom: Damage proportional to Non-
lonizing Energy Loss (NIEL) of traversing particle

NIEL can be calculated (e.g. G.P. Summers et al.,
IEEE Trans Nucl Sci 40, 1372 [1993])

At E_ Tungsten ~ 10 MeV, NIEL is 80 times worse for
protons than electrons and

* NIEL scaling may break down (even less damage
from electrons/positrons)

* NIEL rises quickly with decreasing (proton) energy,
and fragments would likely be low energy

=» Might small hadronic fractions dominate damage®?



G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)
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Damage coefficients less for p-type for E, < ~1GeV
(two groups); note critical energy in Wis ~10 MeV

Are electrons the entire picture?



Hadronic Processes in EM Showers

There seem to be three main processes for generating
hadrons in EM showers (all induced by photons):

* Nuclear (“giant dipole”) resonances
Resonance at 10-20 MeV (~E_ical)

* Photoproduction
Threshold seems to be about 200 MeV

* Nuclear Compton scattering

Threshold at about 10 MeV: A resonance at 340
MeV

=» Flux through silicon sensor should be ~10 MeV ely,
but also must appropriately represent hadronic
component



Rates (Current) and Energy

Basic ldea:

Direct electron beam of moderate energy on
Tungsten radiator; insert silicon sensor at
shower max

For Si, 1 GRad is about 3 x 101%/cm?, or about 5
mili-Coulomb/cm?

=» Reasonably intense moderate-energy
electron or photon beam necessary

What energy...”?



BeamCal Incident Energy Distribution




Shower Max Results
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INCIDENT ELECTRON ENERGY (GEV)
=» Photon production ~independent of incident energy!




5.5 GeV Electrons After 18mm Tungsten Block

Fluence (particles per cm?)

Boundary of 1cm
detector

Radius (cm)

Not amenable for
uniform
IHlumination of
detector.

Instead: split 18mm
W between “pre”
and “post” radiator
separated by large
distance

nuclear
production is
~isotropic =» must
happen dominantly
in “post” radiator!



5.5 GeV Shower Profile
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Proposed split radiator configuration

Smm Tungsten “pre”
13mm Tungsten “post™

Separated by 1m

Fluence (particles per cm?)

Radius (cm)



N L Proposal: JLAB Hall B Beam
AN\ Dump (Plan to run 0.05 pA

through next May) = Total

power in beam ~250W.

et

Oops — tod much
background for Hall B!
Look elsewhere...
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Irradiation Plan

Use existing Micron sensors from ATLAS R&D

* n-type and p-type

« Standard float-zone and Magentic Czochralski

* Runs of 0.1, 0.3, and 1 GRad for each sample

* Runs with samples far from radiator (no hadronic effects)

=» Total integrated dose of ~10 Grad

Will assess the bulk damage effects and charge collection
efficiency degradation.

Sensor +
FE ASIC




Rastering

Need uniform tllumination over 0.25x0.75 cm
region (active area of SCIPP’s charge collection
measurement apparatus).

=» Raster in 0.05¢cm steps over 0.6x1.5 cm,

assuming fluence profile on prior slide (see next
slide for result)

EXposure rate:

1GRad =~ L hours

(NA) e E__ (GeV)

beam

e.g. 10 GRad at 50 nA 5.5 GeV e = ~ 30 Hours

I beam
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Wrap-up

Worth exploring Si sensors (n-type, Czochralski?)

Need to be conscious of possible hadronic content
of EM showers

Energy of e beam not critical, but intensity is; for
one week run require E,.,,(GeV) X l,.om(NA) > 50

SLAC: Summer-fall 2011 ESA test beam with

E,can(GeV) X | om(NA) 217 —is it feasible to wait for
this?



Some notes:

« Beam Calorimeter is a sizable project, ~2 m? of sensors.

« Sensors are in unusual regime: ~ 1 GRad of e*/e-; 1014
n/cm? after several years.

* There are on-going studies with GaAs, Diamond,
Sapphire materials (FCAL report, Nov 2009).

« We'll concentrate on mainstream Si technology proven
by decades of technical development.

* There is some evidence that p-type Si may be particularly
resilient...



Concluding Remarks

A number of generic and specific tracking R&D
studies; here focused on two things:

* Charge division for 10cm sensors. Looks
interesting, but would need to know how to do O-
suppression for split signal...

» Radiation hardness of Si sensors in
electromagnetic (electron-induced) showers. Need
to probe 1 Grad scale, and worry about hadrons in
the shower. Running scheme in hand and hardware
under development. Need final work from JLAB.



