

Plans for Radiation Damage Studies for Si Diode Sensors Subject to 1 GRaD Doses

CERN Linear Collider Workshop October 18-22 2010

NIEL (Non-Ionizing Energy Loss)

Conventional wisdom: Damage proportional to Non-Ionizing Energy Loss (NIEL) of traversing particle

- **NIEL** can be calculated (e.g. G.P. Summers et al., IEEE Trans Nucl Sci **40**, 1372 [1993])
- At $E_c^{Tungsten} \sim 10$ MeV, **NIEL** is 80 times worse for protons than electrons and
- **NIEL** scaling may break down (even less damage from electrons/positrons)
- **NIEL** rises quickly with decreasing (proton) energy, and fragments would likely be low energy

Might small hadronic fractions dominate damage?

G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)

Damage coefficients less for p-type for $E_{e^-} < ~1$ GeV (two groups); note **critical energy** in W is ~10 MeV But: Are electrons the entire picture?

Hadronic Processes in EM Showers

There seem to be three main processes for generating hadrons in EM showers (all induced by **photons**):

- Nuclear ("giant dipole") resonances Resonance at 10-20 MeV (~E_{critical})
- Photoproduction Threshold seems to be about 200 MeV
- Nuclear Compton scattering Threshold at about 10 MeV; ∆ resonance at 340 MeV
- Flux through silicon sensor should be ~10 MeV e/γ, but also must appropriately represent hadronic component

Rates (Current) and Energy

Basic Idea:

Direct electron beam of moderate energy on Tungsten radiator; insert silicon sensor at shower max

For Si, 1 GRad is about 3 x 10¹⁶/cm², or about 5 mili-Coulomb/cm²

Reasonably intense moderate-energy electron or photon beam necessary

What energy...?

BeamCal Incident Energy Distribution

Shower Max Results

Photon production ~independent of incident energy!

5.5 GeV Electrons After 18mm Tungsten Block

uniform illumination of detector. Instead: split 18mm W between "pre" and "post" radiator separated by large distance

Not amenable for

Caution: nuclear production is ~isotropic → must happen dominantly in "post" radiator!

Radius (cm)

5.5 GeV Shower Profile

Proposed split radiator configuration

Radius (cm)

Proposal: JLAB Hall B Beam Dump (Plan to run 0.05 μ A through next May) \rightarrow Total power in beam ~250W.

Oops – too much background for Hall B! Look elsewhere...

Irradiation Plan

- Use existing Micron sensors from ATLAS R&D
- n-type and p-type
- Standard float-zone and Magentic Czochralski
- Runs of 0.1, 0.3, and 1 GRad for each sample
- Runs with samples far from radiator (no hadronic effects)
- Total integrated dose of ~10 Grad

Will assess the bulk damage effects and charge collection efficiency degradation.

Rastering

Need uniform illumination over 0.25x0.75 cm region (active area of SCIPP's charge collection measurement apparatus).

→Raster in 0.05cm steps over 0.6x1.5 cm, assuming fluence profile on prior slide (see next slide for result)

Exposure rate:

$$I GRad \approx \frac{800}{I_{beam}(nA) \bullet E_{beam}(GeV)}$$
 hours

e.g. 10 GRad at 50 nA 5.5 GeV e⁻ → ~ 30 Hours

Fluence (e⁻ and e⁺ per cm²) per incident 5.5 GeV electron (5cm pre-radiator 13 cm post-radiator with 1m separation)

Wrap-up

Worth exploring Si sensors (n-type, Czochralski?)

Need to be conscious of possible *hadronic* content of EM showers

Energy of e⁻ beam not critical, but intensity is; for one week run require E_{beam}(GeV) x I_{beam}(nA) > 50

SLAC: Summer-fall 2011 ESA test beam with $E_{beam}(GeV) \ge I_{beam}(nA) \ge 17 - is$ it feasible to wait for this?

Some notes:

- Beam Calorimeter is a sizable project, ~2 m² of sensors.
- Sensors are in unusual regime: ~ 1 GRad of e⁺/e⁻; 10¹⁴
 n/cm² after several years.
- There are on-going studies with GaAs, Diamond, Sapphire materials (FCAL report, Nov 2009).
- We'll concentrate on mainstream Si technology proven by decades of technical development.
- There is some evidence that p-type Si may be particularly resilient...

Concluding Remarks

A number of generic and specific tracking R&D studies; here focused on two things:

 Charge division for 10cm sensors. Looks interesting, but would need to know how to do 0suppression for split signal...

 Radiation hardness of Si sensors in electromagnetic (electron-induced) showers. Need to probe 1 Grad scale, and worry about hadrons in the shower. Running scheme in hand and hardware under development. Need final work from JLAB.