Optimization of the 500 GeV Beam Delivery System

Guillermo Zamudio

Outline

- The BDS status a year ago & Conservative and nominal parameters.
- High order aberration reduction.
- Tunnel problem & solution.
- Lattice for the Nominal requirements.
- Summary

Guillermo Zamudio.

CLIC

BDS footprint a year ago.

- Crossing angle is 20 mrad.
- 500 GeV BDS needs to be connected with the LINAC.

Guillermo Zamudio.

CLIC

Parameters at 500 GeV

	Conservative	Nominal
Center-of-mass energy	500 GeV	
Total (Peak 1%) luminosity $[cm^{-2}s^{-1}]$	$0.9 \ (0.6) \ 10^{34}$	$2.3 (1.4) 10^{34}$
Repetition rate (Hz)	50	
Bunch charge (10^9)	6.8	
Bunch separation (ns)	0.5	
Beam pulse duration (ns)	177	
Number of bunches	354	
Bunch length (ns) σ_z	44	
Hor./vert. norm. emittance $(10^{-6}/10^{-9} \text{ rad})$	3/40	2.4/25
Hor./vert. final focusing β_x^*/β_y^* (mm)	10/0.4	8/0.1
Hor./vert. IP beam size σ_x^*/σ_y^* (nm)	248/5.7	202/2.3

Guillermo Zamudio.

CLIC

Beam size at the IP in 2009

High order aberrations increase the beam size = reduced luminosity.
Required beam size is 248 / 5.7 nm.

- Optimization of the FFS is done using MAD-X , PTC, MAPCLASS and the Simplex algorithm.

Guillermo Zamudio.

CLIC

Any errors coming from the Collimation?

- Reduce high order aberrations present at the FF entry using sextupoles in the Collimation section.

Guillermo Zamudio.

CLIC

Beam size and divergence at FF entry.

- Aberrations in the vertical beam size need to be reduced.

- Sextupoles in the Collimation are used as correctors.

Guillermo Zamudio.

CLIC

Beam size and divergence at FF entry.

- Aberrations have been reduced.
- Vertical divergence increased with ~ 3%.

Guillermo Zamudio.

CLIC

Optimization of the FFS

- Beam size and divergence at the FF entry: OK.
- Next step: Reduce remaining errors by optimizing the FFS.

Guillermo Zamudio.

CLIC

Beam size at the IP after optimization

- Quadrupole and sextupole strength are used as variables.

- The required beam size at the IP is 248 / 5.7 nm.
- The high order aberrations have been reduced notoriously.

Guillermo Zamudio.

CLIC

Outline

- The BDS status a year ago & Conservative and nominal parameters.
- High order aberration reduction. ✓
- Tunnel problem & solution.
- Lattice for the Nominal requirements.
- Summary

Tunnel fitting problem

- The 500 GeV BDS needs to be modified in order to give enough space for instruments

Guillermo Zamudio.

CLIC

Tunnel fitting solution

- Rotate the BDS 0.7 mrad around the IP for better fitting.
- Modify dipoles in the Collimation to align the Diagnostics and LINAC.
- Crossing angle reduced from 20 mrad to 18.6 mrad.

Guillermo Zamudio.

CLIC

Re-optimizing the BDS

		Original	New (Rotated)
FFS entry	Horizontal Beam size [um]	18.53	18.53
	Vertical Beam size [um]	0.666	0.666
	Horizontal Divergence [10-9]	334.0	333.7
	Vertical Divergence [10-9]	138.16	135.83
IP	Horizontal Beam size [nm]	246.52	246.35
	Vertical Beam size [nm]	5.84	5.92
Luminosity	[10 ³⁴ cm ⁻² s ⁻¹]	1.04	1.02

- The previously optimized FFS has been modified to fit in the tunnel. Re-optimization needed.

- Matching of sextupoles in the Collimation has proven to be enough.

- The rotated design still meets the luminosity and beam size requirements, (248 / 5.7 nm ,0.9 10⁻³⁴ cm⁻²s⁻¹).

Guillermo Zamudio.

Outline

- The BDS status a year ago & Conservative and nominal parameters.
- High order aberration reduction. ✓
- Tunnel problem & solution.
- Lattice for the Nominal requirements.
- Summary

Guillermo Zamudio.

CLIC

Beam parameter at 500 GeV

	Conservative	Nominal
Center-of-mass energy	500 GeV	
Total (Peak 1%) luminosity $[cm^{-2}s^{-1}]$	$0.9 \ (0.6) \ 10^{34}$	$2.3(1.4) 10^{34}$
Repetition rate (Hz)	50	
Bunch charge (10^9)	6.8	
Bunch separation (ns)	0.5	
Beam pulse duration (ns)	177	
Number of bunches	354	
Bunch length (ns) σ_z	44	
Hor./vert. norm. emittance $(10^{-6}/10^{-9} \text{ rad})$	3/40	2.4/25
Hor./vert. final focusing β_x^*/β_y^* (mm)	10/0.4	8/0.1
Hor./vert. IP beam size σ_x^*/σ_y^* (nm)	248/5.7	202/2.3
	1	1
	DONE!	???

Guillermo Zamudio.

CLIC

500 GeV Nominal lattice

- Required beam size is 202 / 2.3 nm.
- The conservative lattice used with the nominal parameters yields neglectable aberrations but the beam size is not small enough.
- Match the FFS quadrupoles and sextupoles.

Guillermo Zamudio.

CLIC

500 GeV Nominal lattice

- Required beam size is 202 / 2.3 nm.
- The matching increases σ_x (~ 5%) while σ_v is reduced (~50%).
- Increasing dispersion in the FFS is tested as a solution.

Guillermo Zamudio.

CLIC

500 GeV Nominal lattice

Dispersion increment	Beam size		Total (Peak) Luminosity
%	$\sigma_x \; [\mathrm{nm}]$	$\sigma_y \; [\mathrm{nm}]$	$[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$
Required	202	2.3	2.3(1.4)
0	230	2.5	2.18(1.39)
10	221	2.4	2.28(1.47)
20	210	2.4	2.47(1.56)
30	203	2.3	2.52(1.54)

Quadrupoles and sextupoles are matched for each case.
Peak luminosity requirement is reached with a dispersion increment of 10%.

Guillermo Zamudio.

CLIC

Diagnostic section alignment

To maintain the Diagnostics section aligned with the LINAC the rotation angle around the IP increases as the dispersion is increased.

Guillermo Zamudio.

CLIC

Conclusions

- The current 500 GeV BDS for the conservative parameters has now neglectable high order aberrations and satisfy the luminosity requirements.
- The 500 GeV BDS fits now in the tunnel.
- The Diagnostics section is now aligned with the LINAC,
- A lattice for the nominal requirements can now be chosen from the four proposed.

Thank you