

ML Single Tunnel Cross Section

GDE Asian Regional Team KEK A. Enomoto

Contents of Presentation

- -Boundary condition for single tunnel design
- LHC , XFEL Example
- Asian Team Design status

Main Linac (ML) RF Unit in RDR

- Double-tunnel accelerator configuration -

Service Tunnel

Global Design Effort - CFS

RDR ML RF Unit - Double Tunnel Section -

RDR ML RF Unit - Service Tunnel-

Thanks to the FNAL Facilities Engineering Services Section for AutoCAD data!

Cryomodule Assembly

with waveguides for DRFS

(Beam Tunnel)

(Drawing y Matsushita, KEK, RF group)

Determination of Tunnel Diameter

(for Single Tunnel in floor-mount DRFS)

ILC Cryomodule

S1-Global Cryomodules are compatible with each other.

ILC Cryomodule

12-m cryostats are combined in tunnel to form a "string".

Ceiling CM Example Euro-XFEL @DESY

Global Design Effort - CFS

Ceiling CM Example Euro-XFEL @DESY

il Global Design Effort - CFS

Floor CM Example

LHC \$3800 Tunnel

#	Equipment name	#	Equipment name
1	Machine cryostat	20	General services safety
2	QRL jumper	22	General services phones
3	Helium warm ring line DN100	23	Lighting
4	Helium recovery line DN150	24	Electrical powering for transport
5	EDA DN150	26	Space reserved for transport
6	EDR DN150	28	Space reserved for survey
7	Water filling DN65	29	Protection barriers
10	Cable tray1 (general services)	#	Space reserved for an e- machine
11	Cable tray3 (power and optical fibers)	31	Beam loss monitor
12	Cable tray2 (signals)	33	Cable tray 5 (dispersion suppressors)
14	Vacuum pumps	42	Vacuum pumping mobile group
15	Electronics chassis	81	Cablefil
17	Optical fibers 640	83	Telex
19	Communications antenna cable		

Floor CM Example FNAL Project X Test Facility

Global Design Effort - CFS

Floor CM Example FNAL Project X Test Facility

CM1_TUNNEL (Photos from Jerry Leibfritz)

Discussion at KEK for the clearance from Tunnel Wall

Current Conclusion

for Clearance from Tunnel Wall-

~500 mm is minimum

Cryomodule Position (2)

Vacuum pump space was discussed.

The present space seems enough to have it under the module body.

Space Reservation for Alignment

Space Reservation for Alignment

This area should be discussed with machine alignment people.

Transport Space

Transport Space

g a gal g a

Thanks to XFEL design team !

for STEP files

to convert design data from IDEAS to INVENTOR. Parts files exceed more than 2600.

Space Reservation for Alignment

This area should be discussed with machine alignment people.

Asian Team Design Status 3-D ML DRFS Tunnel Section

Global Design Effort - CFS

DRFS Single Tunnel Section Dimension

а

а

ÜÜ Global Design Effort - CFS

DRFS 2-D Plan & Elevation

Global Design Effort - CFS Single Tunnel with RDR-HLRF

Global Design Effort - CFS Single Tunnel with RDR-HLRF

Summary

- Single tunnel configuration was discussed with the RDRtype HLRF system and with the DRFS type.
- The ILC cryomodule positioning in the single tunnel was discussed referring to examples (XFEL, LHC, Project X, S1 Global)
- Asian Team design with 3-D approach has been well progressed during the half period of FY2010.

Boundary conditions and guidelines for design works

APPENDIX

ML Single-Tunnel Configuration

- Distribute RF System (DRFS) -

e- ML	282 RF units
e+ ML	278 RF units
Total	560 RF units

Field gradient Energy gain per RF unit (with 22% tuning overhead)

31.5 MV/m

850 MeV

ML RF Unit - Distributed RF System (DRFS) -

11:30-12:00 Shigeki Fukuda, HLRF Requirements

Safety Euro-XFEL @DESY

Fig. 2: Cross-section of the LINAC tunnel (with smoke extraction duct)

x

Fig. 3: View/section through the LINAC tunnel (for better presentation, without the smoke extraction duct)

Fig. 4: Principle employed for the water curtains during the installat.

Fig. 6: Separation wall with two oppositely swinging air flaps and three water jets in the passage area

XFEL Design Report