Single Point Resolution Studies and Development and Analysis of Grid GEMs

Lea Steder

DESY Hamburg

IWLC 2010 - Geneva 20th of October 2010

- 1 medium size TPC prototype
- 2 resolution studies
 - single point resolution
 - extrapolation to long drift
- 3 grid GEM development and analysis
 - material usage and flatness
 - impact on pulses and hits
 - grid influence on single hit efficiency and single point resolution
 - grid GEMs in a large TPC
- 4 summary and outlook

cosmics in a TPC prototype

$\mathsf{MediTPC}$

goal of data taking:

- \rightarrow single point resolution studies with conventional GEM mounting
- \rightarrow check single point resolution with grid GEM
- \rightarrow quantify impact of grid GEM
- prototype with triple (grid) GEM
- sensitive volume: $6 \times 8 \times 67 \,\mathrm{cm}^3$
- cosmic muons, 4 T magnetic field
- \blacksquare P5 gas: 95 % Ar, 5 % $\rm CH_4$
- **\blacksquare** pad size $1.27 \times 7 \,\mathrm{mm}^2$
- 10 pad rows, 480 channels
- pad plane staggered for grid GEM studies

Single Point Resolution & Grid GEM Studies

IWI C 2010

Lea Steder

single point resolution well below envisaged value of $100\,\mu\text{m}$ over the whole drift length

20.10.2010 IWLC 2010

resolution studies - extrapolation

effective number of e⁻: $N_{eff,\chi^2} \approx 29$, $N_{eff,global} \approx 24$ intrinsic resolution: $\sigma_{0,\chi^2} \approx 53 \,\mu m$, $\sigma_{0,global} \approx 53 \,\mu m$

slope: matter of diffusion \Rightarrow gas choice

20.10.2010 IWLC 2010

Lea Steder

requirements on a new GEM support structure

future application in large scale TPCs like the ILD TPC need scalable mounting scheme for GEMs

- large area coverage with GEMs
- small amount of insensitive material
- single point resolution of 100 µm achievable
- dE/dx resolution of 5% feasible
 - $\Rightarrow \text{ flat installation of GEMs} \\ \text{framed GEMs:} \\ \Delta z \sim 400 900 \,\mu\text{m}$
- structure cell size: order of GEM surface profile structure

requirements on a new GEM support structure

future application in large scale TPCs like the ILD TPC need scalable mounting scheme for GEMs

- large area coverage with GEMs
- small amount of insensitive material
- single point resolution of 100 µm achievable
- dE/dx resolution of 5 % feasible
 ⇒ flat installation of GEMs framed GEMs:
 - $\Delta z \sim 400-900\,\mu m$

 structure cell size: order of GEM surface profile structure

20.10.2010 IWLC 2010

requirements on a new GEM support structure

future application in large scale TPCs like the ILD TPC need scalable mounting scheme for GEMs

- large area coverage with GEMs
- small amount of insensitive material
- single point resolution of 100 µm achievable
- dE/dx resolution of 5% feasible ⇒ flat installation of GEMs framed GEMs: $\Delta z \sim 400 - 900 \,\mu m$
- structure cell size: order of GEM surface profile structure

material usage for grid

- \blacksquare ceramic (Al₂O₃) structures of 1 mm width
- almost edgeless for large area coverage
- no stretching of foils needed \Rightarrow smaller forces
- $X_{0,GRP} = 19.4 \,\mathrm{cm}$, $X_{0,ceramic} = 7.0 \,\mathrm{cm}$
- only one fifth of material in the detector

material usage for grid

- \blacksquare ceramic (Al₂O₃) structures of 1 mm width
- almost edgeless for large area coverage
- no stretching of foils needed \Rightarrow smaller forces
- $X_{0,GRP} = 19.4 \,\mathrm{cm}$, $X_{0,ceramic} = 7.0 \,\mathrm{cm}$
- only one fifth of material in the detector

flatness of grid GEMs

surface profiles of both sides of triple GEM structures measured

- flatter than conventionally framed GEMs
- without stretching
- \Rightarrow less material, no sagging as observed for framed GEMs

x (mm) framed GEM

20.10.2010 IWLC 2010

data reconstruction

- \blacksquare charge in time bins on pads \rightarrow pulse
- pulses in one row \rightarrow hit
- \blacksquare hits on pad plane $\rightarrow \mbox{ track}$
- track fitting

20.10.2010 I

IWLC 2010

Lea Steder

pulses and charge per pad

less pulses in grid region

less charge on these pads

 \Rightarrow threshold effect: pulses with less charge below or in direct vicinity of grid are cut away

number of pulses per hit

number of pulses per hit important for single point resolution

horizontal structure

hits below horizontal structure: less pulses per hit vertical structure

hits in direct vicinity (± 1 pad width): less pulses per hit

⇒ charge loss under and near to grid: more narrow hits 20.10.2010 IVLC 2010 Lea Steder Single Point Resolution & Grid GEM Studies

single hit efficiency determination

two reconstructions of same data sample

monitor sample

analysis sample

 \Rightarrow single hit efficiency

20.10.2010 IWLC 2010

single hit efficiency

single hit efficiency over \boldsymbol{x}

dip around vertical structures: twice the grid width

20.10.2010 IWLC 2010

Lea Steder

single hit efficiency

dip around vertical structures: twice the grid width no influence of horizontal structures

 \Rightarrow only vertical structures reduce hit reconstruction efficiency

20.10.2010 IWLC 2010

single point resolution - comparison frame/grid GEMs

deviation of the order of normal run to run fluctuations

 \Rightarrow grid influence on single point resolution is small

20.10.2010 IWLC 2010

Lea Steder

averaged over all rows: negligible impact of horizontal structures

single point resolution - horizontal/vertical structures

vertical structure

averaged over all rows: negligible impact of horizontal structures

strong influence of vertical structures: deterioration of resolution about 10-20 µm

 \Rightarrow only vertical structures influence single point resolution

20.10.2010 **IWLC 2010** Lea Steder

- threshold effect of charge yields less pulses below grid
- \blacksquare additional quality cuts for dE/dx determination needed

horizontal structures

- no impact on single hit efficiency
- single point resolution comparable to reference run without grid

vertical structures

- \blacksquare hits in ± 1 pad width vicinity significantly changed
- single hit efficiency shows dips of twice the grid width
- \blacksquare single point resolution degrades up to 20 %
- \Rightarrow horizontal structures unproblematic
- \Rightarrow vertical structures should be used as seldom as possible

- advantages: almost edgeless, large area coverage, minimizes dead material, flat GEM mounting
- grid GEM mounting: negligible impact on single point resolution
- grid cell size: optimization problem of material usage and achievable flatness of GEM foils
- horizontal preferred to vertical structures
- \Rightarrow development of grid GEM allows for step from prototype application to large scale TPC with GEM amplification structure

resolution studies

- over 67 cm drift length: envisaged goal achieved
- \blacksquare extrapolation to 2 m of drift: resolution of about 130 μm
- \blacksquare with different gas: diffusion reducible \rightarrow 100 μm goal will be in reach
- data with T2K gas taken, systematics have to be understood
- grid GEM studies
 - new mounting scheme developed
 - flat installation without stretching possible
 - no impact on resolution
 - large prototype module will prove utility of grid GEMs for large detectors