Feasibility study of Higgs pair production in a Photon Collider

Tohru Takahashi Hiroshima University

for S.Kawada, N.Maeda, K.Ikematsu, K.Fujii, Y.Kurihara,,,

IWLC2010 CERN

Higgs Physics w/ PLCs

- Two photon decay width of light higgs
 - $-2\% \sim 8\%$ for Mh = 129geV ~ 160 GeV
- Discovery potential of heavy Mh (LHC wedge)
 - ~< 360GeV</p>
- CP w/ Linear polarization
 - ~10% precision for 120GeV

Feasibilities for standard Higgs processes have been understood rare processes

scenario for PLC run before e+e-

Purpose of this study

Final goal: Study of Higgs self-coupling

See feasibility of the measurement of Higgs pair creation in PLC.

Sensitivity vs energy

sensitivit
$$y = \frac{N(\delta \kappa) - N_{SM}}{\sqrt{N_{obs}}} = \frac{L |\eta \sigma(\delta \kappa) - \eta' \sigma_{SM}|}{\sqrt{L(\eta \sigma + \eta_B \sigma_B)}}$$

Beam para $\sqrt{petpeak}$ ~ 300GeV (based on TESLA optimistic)

	x3.7	x4.8
Ee[GeV]	210	195
$n(10^{10})$	2	2
$\sigma_{z}(mm)$	0.35	0.35
$\gamma \varepsilon_{x/v}[m \text{ rad}]$	2.5/0.03	2.5/0.03
$\beta_{x/y}$ [mm]@IP	1.5/0.3	1.5/0.3
$\sigma_{x/y}[nm]$	96/4.7	99/5.5
$\lambda_{\rm L}[{ m nm}]$	1054	770
X	3.76	4.8
Pulse Energy[J]	10	10
Lgeo(e-e-) [10 ³⁴ cm ⁻² s ⁻¹]	8.7	8.1
Lpeak($\gamma\gamma$) [10 ³⁴ cm ⁻² s ⁻¹]	1.2	0.7
$[Ltot(\gamma\gamma)[10^{34}cm^{-2}s^{-1}]$	12.6	5.88

Luminosity Distribution

$$\frac{1}{Ltot} \int \sigma(w_{\gamma\gamma}) \frac{dL}{dw_{\gamma\gamma}} dw_{\gamma\gamma} = 0.0131 fb \quad \text{13events@Ltot=1000fb}^{-1}$$

~16events/year

Signal & Main backgrounds

Simulation & Analysis

- Event generation and detector simulation
- Reconstruct events
 - Jet clustering (reconstruct jets)
 - b-tagging (identification of b-quark)
 - nsig method was used in this study.
 - Reconstruct particles (determination of jet combination)
- Selection
 - Selection with Neural Network (NN)

Reconstruct particles

We have to choose two jets from 4 jets (j1-j4) in order to reconstruct original particle.

- ->There are 3 patterns of combination in a event.
- ->The jet of the least χ^2 was chosen to be the most probable combination.

$$\chi_H^2 = \frac{(M_1 - M_H)^2}{\sigma_{2j}^2} + \frac{(M_2 - M_H)^2}{\sigma_{2j}^2}$$

M₁, M₂: reconstructed particle mass

M_H: Higgs mass

 $\sigma_{2\text{\scriptsize i}}$: mass resolution

Selection (1)

 β : Lorentz factor of reconstructed particle

θ : Angle between reconstructed particle and initial photon beam

$$\beta \ge 0.05, \left|\cos\theta\right| \le 0.99$$

b-tagging

More than 3 b-flavor jets with (nsig=3.0, noffv=1) analysis

More than 2 b-flavor jets with (nsig=3.0, noffv=2) analysis

	generate	pre-selection
H	5.0*10 ⁴	29958
WW	7.5*10 ⁷	83777
ZZ	1.0*10 ⁶	87057

Selection (2) --- Neural Network (NN)

- 9 input parameters:
 - $-\chi_H^2,\chi_Z^2,$
 - transverse (longitudinal) momentum,
 - # of b-flavor jets (2 patterns),
 - visible energy,
 - Y_{cut} value of jet clustering,
 - # of tracks
- Maximize statistical significance

$$S_{stat} = \frac{N_{Sig} * \eta_{Sig}}{\sqrt{N_{Sig} * \eta_{Sig} + N_{BG} * \eta_{BG}}}$$

N: # of events occurring in 5 years

η: selection efficiency

Sig: signal

BG: background

Distribution of input parameters (1)

Results of NN analysis --- WW BG

Results of NN analysis --- ZZ BG

attempt for improvement

 previous analysis apply NN selection for WW and ZZ background separately.

 S_{stat} < 1 if both WW and ZZ cut are applied

possible improvement by jet clustering

Analysis with CheatJetFinder --- ZZ BG

Cheated JetFinder:

100% correct parton assignment using generator information

Analysis with CheatJetFinder --- WW BG

Summary

- We tried to see $\gamma\gamma$ -> HH in a photon collider based on TESLA optimistic parameters.
- gg CM energy of 270GeV is optimum for mh =120GeV
- backdournds
 - $-\gamma\gamma$ ->WW has 10⁶ times lager cross section
 - $-\gamma\gamma$ ->ZZ has 10³ times lager cross section
- It seems possible to suppress backgrounds with improved jet clustering technique.
 - statistical significance of 4.6 expected for WW and ZZ cut with perfect jet clustering
- more to do
 - optimize NN training
 - study jet clustering improvement (it is not just for HH analysis
 - γγ->bbbb backgroud
 - we believe it is small for dangerous kinematical region
 - higher Higgs mass

Backup slide

Optimization of CM energy

sensitivit
$$y = \sqrt{L} \frac{\left| \sigma(\delta \kappa) - \sigma_{SM} \right|}{\sqrt{\sigma(\delta \kappa)}}$$

L: luminosity (1000fb⁻¹)

 σ : cross-section

SM: standard model

δκ: deviation from the standard model

In order to simplify the discussion, we set the detection efficiency to be 100% and there are no background.

We set the optimized CM energy is equal to 270GeV.

Luminosity distribution

We adjusted the parameters of the laser and e- beam to have a peak at the optimum energy.

Effective cross-section of Higgs pair creation was calculated 0.013fb.

16.4events/year (1year = 10⁷sec)

Effective cross-section

AA->HH: 0.013fb

• AA->WW: 11.6pb

• AA->ZZ: 9.42fb

Policy of analysis

表 4: ヒッグス粒子の主な崩壊モードとその分岐比

モード	$b ar{b}$	WW	gg	au au	$c\bar{c}$	ZZ	$\gamma\gamma$	γZ
分岐比	0.6774	0.1331	0.0713	0.06916	0.02982	0.0152	0.002231	0.001084

The highest decay branching ratio is HH->4b mode (45.9%)

表 2: W ボゾンの主な崩壊モードとその分岐比

モード	ud	cs	$\nu_e e$	$ u_{\mu}\mu$	$\nu_{ au} au$	us	cd	cb	ub
分岐比	0.3209	0.3201	0.1084	0.1084	0.1083	0.0166	0.0166	0.0006	0.00005
表 3: Z ボゾンの主な崩壊モードとその分岐比									

モード	$dar{d}$				$c\bar{c}$				e^+e^-	$\mu^+\mu^-$
分岐比	0.154	0.154	0.152	0.120	0.120	0.069	0.069	0.069	0.034	0.034

WW->4b mode: 0% ZZ->4b mode: 2.3%

We tried to reconstruct events which generated 4b.

Jet clustering

We can obtained the information of 4-momentum of original quark if we can obtain the information of original jets, so we have to reconstruct original jets first.

JADE clustering

$$\frac{\left(p_i + p_j\right)^2}{E_{vis}^2} < Y_{cut}$$

p_i: 4-momentum of particle

E_{vis}: Visible energy

Y_{cut}: Any value

When particle i and j satisfy this equation, we calculate 4-momentum of sum of these particles.

->reconstruct jets

Since HH->4b reaction is 4-jets mode, we applied forced 4-jets analysis.

Method of identify b-quark.

nsig method

$$\frac{L}{\sigma_L} \ge nsig$$

L: The least approach to the interaction point of the track in the plane perpendicular to the beam

 σ_L : Distance resolution of detector

nsig、noffv: Any value

When there are noffv tracks which satisfy this equation, we regarded this quark as b-quark.

->identification of b-quark

Accuracy of b-tagging

Efficiency for AA->HH->4b events

Contamination for AA->WW events

図 43: b フレーバジェット識別の精度

図 44: b フレーバジェット識別の誤判定率

Distribution of input parameters (2)

of b-flavor jets with (nsig=3.5, noffv=1) analysis

of b-flavor jets with (nsig=3.5, noffv=2) analysis

Distribution of input parameters (3)

longitudinal momentum

transverse momentum

Distribution of input parameters (4)

visible energy

Y_{cut} value of jet clustering

Verification of statistical error of NN training

weights	Maada	Maeda Kawada		Kawada
events	IVIaeua	ON	OFF1	OFF2
Maeda	13089 2729	13263 2916	13276 2941	13788 3041
29935 86944	1.55	1.52	1.52	1.55
Kawada-ON	13047 2832	14254 3488	13880 3293	13738 3144
29958 87484	1.52	1.50	1.51	1.52
Kawada-OFF1	13047 2735	13168 2896	13575 3057	13738 3057
29958 87057	1.54	1.52	1.52	1.54
Kawada-OFF2	13391 2904	12830 2723	12538 2575	13291 2846
29823 87142	1.54	1.52	1.53	1.54

of remained HH, # of remained ZZ, Maximum significance

Features of Higgs pair creation in PLC

Gamma Gamma process

Final state: 2 particles

cf: e+ e- process

Final state: 3 particles

Comparing with e+e- collision

Self coupling contribute different way

Lower energy threshold