Review of Spin Rotators for LC

A. Latina (Fermilab)

October 18-22, 2010
IWLC2010 - CERN, Geneva

- Spin dynamics and design criteria
- Spin rotator location
- Spin rotator options
- CLIC case: two options
- Summary and conclusions

Spin Dynamics Summary

\Rightarrow The precession motion for the magnetic moment of an accelerating relativistic particle is given by the solution of the Thomas-BMT equation, see for instance Bryan W. Montague, Phys. Rep., 113, No. 1, 8-13 (1984)

- Spin Precession

$$
\phi_{s}=G \gamma_{0} \alpha
$$

- Mean polarization:

$$
<P_{z}>=P_{0} e^{\frac{-\left(G \gamma_{0} \alpha \sigma_{\delta}\right)^{2}}{2}}
$$

- Relative depolarization:

$$
1-\frac{\left\langle P_{z}\right\rangle}{P_{0}}
$$

- Where

Symbol	Value	Description
G	0.00115965219	anomalous momentum of the electron
α	-	arc bending angle
γ_{0}	-	relativistic factor
σ_{δ}	-	energy spread

Spin Depolarization

- In the damping rings, if the spin direction is not perpendicular to the horizontal plane, spin precedes during the storage
- Because the precession frequency depends on the beam energy, the precession phase is randomized by energy spread
- This randomization causes a significant depolarization. The spin direction has to be perpendicular to the horizontal plane to avoid this depolarization effect by the precession

Spin Rotator Design Criteria

- Design Criteria (P. Emma for NLC, 1994)
- Spin should be orientable in any direction
- Net momentum compaction must be small such that energy fluctuations do not become longitudinal position fluctuations (less than $100 \mu \mathrm{~m}$ bunch length © IP for NLC)
- It should be located such that total spin diffusion due to energy spread is small
- System should not dilute significantly the beam transverse emittance (small energy spread)
- System should be short, simple and robust

Spin Rotator Location

- Spin precedes around the magnetic field
\Rightarrow Longitudinal Polarization should be perpendicular before DR injection
\Rightarrow Polarization control after DR

Half Serpent Spin Rotator

\Rightarrow Very simple schema: the system requires only nested horizontal and vertical chicanes; but they inevitably dilute the transverse emittances through synchrotron radiation emission
\Rightarrow But a vertical bending schemes are not feasible:

Disadvantages

- Each vertical bend would have to be about 1000 meters long to keep vertical emittance from growing even 2%
- $R_{56} 800$ meters in such a setup - totally unacceptable
- Spin rotation is fixed, we want full variability in exiting polarization

Solenoid Based Spin Rotator

\Rightarrow First designed by Paul Emma for NLC

- Spin Rotation is achieved by two solenoids with a bending magnet in between
- Each solenoid is split in two parts separated by a reflector $\left(\begin{array}{cc}I_{2} & 0 \\ 0 & -I_{2}\end{array}\right)$ to correct for couplings \Rightarrow there are four solenoids in total
- The central bending section must rotate the spin by 90 degrees
- This configuration allows arbitrary spin orientation
\Rightarrow Sketch

Emma Rotator

Description

- Reflector beamline : four FODO cells with 90 degrees phase advance in X and 45 degrees phase advance in Y
- Bend section : mini arc composed by three FODO cells with 90 degrees phase advance in X and Y (can be shortened)

Spin Rotator Location in CLIC

CLIC RTML layout (F.Stulle)

Previous layout

Spin Precession and Depolarization in CLIC

region	$E_{0}[\mathrm{GeV}]$	σ_{δ}	$\alpha_{\text {electrons }}$ [rad]	$\alpha_{\text {positrons }}$ [rad]
exit of damping rings to bc1	2.86	0.13%	0	0
exit of bc1 to booster	2.86	1.04%	0	0
exit of booster to bc2	9	0.33%	$\pi-\pi+$ HV-doglegs $=0$	$\pi+$ HV-doglegs $=\pi$
exit of bc2 to bds	9	1.64%	0	0
exit of main linac to ip	1500	0.35%	$\mathbf{1} \cdot \mathbf{1 0}^{-\mathbf{3}}$	$\mathbf{1 \cdot 1 0 ^ { - 3 }}$

region	$E_{0}[\mathrm{GeV}]$	σ_{δ}	$1-\frac{\left\langle P_{s}>\right.}{P_{0}}[\%]$	$\phi_{s}=a \gamma_{0} \alpha[\mathrm{deg}]$	n-turns
exit of damping rings to bc1	2.86	0.13%	0	0	0
exit of bc1 to booster	2.86	1.04%	0	0	0
exit of booster to bc2 entrance	9	0.33%	$0 / 2.2$	$0 / 3676.4 \equiv 76.4$	$0 / 10.2$
exit of bc2 to bds	9	1.64%	0	0	0
exit of main linac to ip	1500	0.35%	$\mathbf{0 . 0 0 7}$	$\mathbf{1 9 5}$	$\mathbf{0 . 5 4}$

\Rightarrow From the point of view of the spin dynamics, ideal location for the spin rotators would probably be: before bc1 for the electrons, before bc2 for the positrons
\Rightarrow Notice that, in case of a symmetric RTML where both spin rotators are placed before bc1 and assuming that the beam experiences a total bending angle $\alpha=\pi / 2_{\mathrm{booster} \rightarrow \mathrm{bc} 2}$ for each line, the total depolarization per beam is 0.56% per line. (with a precession of 5.1 n -turns)

Solenoid Strength

- Each of the four solenoids must be capable of providing a maximum of ± 45 degrees spin rotation

$$
\psi_{\text {spin }}=\pi / 4, \quad \text { with } \quad \psi_{\text {beam }}=\psi_{\text {spin }} / 2
$$

- Solenoid strength

$$
k=\frac{\psi_{\mathrm{spin}}}{2 L}=\frac{B_{z}}{2\left(B_{0} \rho\right)}
$$

Assuming 2.6 meters long solenoids (like ILC)

$$
k=\frac{\pi / 4}{2} \frac{1}{(L=2.6 \mathrm{~m})}=0.15104 \mathrm{~m}^{-1}
$$

\Rightarrow The maximum longitudinal field is:

$$
B_{z, \max }=2 \cdot k \cdot\left(B_{0} \rho\right)=2 \cdot k \cdot \frac{E_{0}}{e c}=2 \cdot 0.15104 \mathrm{~m}^{-1} \cdot \frac{E_{0}}{e c}
$$

required magnetic field at 2.86 or 9 GeV is:

$$
\begin{aligned}
B_{z, \max } @ 2.86 \mathrm{GeV} & =2.9 \mathrm{~T} \\
B_{z, \text { max }} @ 9 \mathrm{GeV} & =9.1 \mathrm{~T}
\end{aligned}
$$

Bending Arc

- The bending section should rotate the spin by 90 degrees

$$
\begin{gathered}
\phi_{s}=a \gamma_{0} \alpha=\frac{\pi}{2} \\
\alpha @ 2.86 \mathrm{GeV}=\frac{\pi / 2}{a\left(\gamma_{0}=2.86 e 3 / 0.511\right)}=0.24202 \mathrm{rad}=13.867 \text { degrees } \\
\alpha @ 9 \mathrm{GeV}=\frac{\pi / 2}{a\left(\gamma_{0}=9 e 3 / 0.511\right)}=0.076908 \mathrm{rad}=4.4065 \text { degrees }
\end{gathered}
$$

- Magnetic strength:

$$
\begin{aligned}
B \rho @ 2.86 \mathrm{GeV} & =\frac{p c}{e c}=\frac{2.86 \mathrm{GV}}{c}=\frac{2.86 \mathrm{GV}}{2.997925 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}=9.5 \mathrm{Tm} \\
B \rho @ 9 \mathrm{GeV} & =\frac{p c}{e c}=\frac{9 \mathrm{GV}}{c}=\frac{9 \mathrm{GV}}{2.997925 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}=30 \mathrm{Tm}
\end{aligned}
$$

Bending Magnets and Longitudinal Motion

- Assuming to be using 6,1 meter long magnets, this corresponds to a bending radius

$$
\begin{gathered}
\rho @ 2.86 \mathrm{GeV}=\frac{L}{\alpha}=\frac{6 \cdot 1 \mathrm{~m}}{0.24202 \mathrm{rad}}=24.792 \mathrm{~m} \\
\rho @ 9 \mathrm{GeV}=\frac{L}{\alpha}=\frac{6 \cdot 1 \mathrm{~m}}{0.076908 \mathrm{rad}}=78.015 \mathrm{~m}
\end{gathered}
$$

\Rightarrow Magnetic field

$$
\begin{gathered}
B @ 2.86 \mathrm{GeV}=\frac{9.5 \mathrm{Tm}}{24.792 \mathrm{~m}}=0.38319 \mathrm{~T} \\
B @ 9 \mathrm{GeV}=\frac{30 \mathrm{Tm}}{78.015 \mathrm{~m}}=0.38454 \mathrm{~T}
\end{gathered}
$$

$\Rightarrow R_{56}$ for the bending section is:

$$
\begin{gathered}
R_{56} @ 2.86 \mathrm{GeV}=60.0 \mathrm{~mm} \\
R_{56} @ 9 \mathrm{GeV}=6.0 \mathrm{~mm}
\end{gathered}
$$

ISR-Induced Emittance Growth

The effect of incoherent synchrotron radiation (ISR) emission on the emittance growth can be estimated using

$$
\Delta \gamma \epsilon=4 \times 10^{-8} E^{6}[\mathrm{GeV}] I_{5}\left[\mathrm{~m}^{-1}\right]
$$

where

$$
I_{5}=\frac{4 L}{|\rho|^{3}} \cdot \frac{\eta^{2}+\left(\eta \alpha+\eta^{\prime} \beta\right)^{2}}{\beta}
$$

\Rightarrow Case of $E=\mathbf{2 . 8 6} \mathbf{G e V}$: using $L=1 \mathrm{~m}, \rho=24.8 \mathrm{~m}$, average dispersion and its derivative $\eta=0.3 \mathrm{~m}$ and $\eta^{\prime}=0.15 \mathrm{rad}$, horizontal twiss $\beta=22.5 \mathrm{~m}$ and $\alpha= \pm 3.5$, and horizontal emittance $\gamma \epsilon=0.68 \mu \mathrm{~m}$:

$$
\frac{\Delta \gamma \epsilon}{\gamma \epsilon}=0.7 \%
$$

\Rightarrow Case of $E=\mathbf{9} \mathbf{G e V}$: using $L=1 \mathrm{~m}, \rho=78.0 \mathrm{~m}$, average dispersion and its derivative $\eta=0.1 \mathrm{~m}$ and $\eta^{\prime}=0.05 \mathrm{rad}$, horizontal twiss $\beta=22.5 \mathrm{~m}$ and $\alpha= \pm 3.5$, and horizontal emittance $\gamma \epsilon=0.68 \mu \mathrm{~m}$:

$$
\frac{\Delta \gamma \epsilon}{\gamma \epsilon}=0.003 \%
$$

Spin Rotator and Bunch Compressor

- P. Emma, 1994: "the rotator system has very little impact on the performance of the bunch compressor"
- Longitudinal transfer matrix of the bunch compressor

$$
R_{\mathrm{BC}}=\left(\begin{array}{cc}
1+f R_{56} & R_{56} \\
f & 1
\end{array}\right)
$$

- In case of full compression, ie. $1+f R_{56}=0$, adding the spin rotator changes the total transfer as follows

$$
R_{\mathrm{BC}} \cdot R_{\mathrm{ROT}}=\left(\begin{array}{cc}
1+f R_{56} & R_{56} \\
f & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & R_{56} \\
f & 1+\alpha f
\end{array}\right)
$$

\Rightarrow Bunch length after compression is unchanged by the rotator and the energy spread after compression is smaller $\left(f=2 \mathrm{~m}^{-1}, \alpha=-0.04 \mathrm{~m}\right)$:

$$
\sigma_{z, f}=\sigma_{\delta, i} R_{56}, \quad \sigma_{\delta, f}=\sqrt{\sigma_{z, i}^{2} f^{2}+\sigma_{\delta, i}^{2}(1+\alpha f)}
$$

- In our case, as bc1 does not fully compress,

$$
R_{\mathrm{BC}} \cdot R_{\mathrm{ROT}}=\left(\begin{array}{cc}
1+f R_{56} & R_{56}+\alpha\left(1+f R_{56}\right) \\
f & 1+\alpha f
\end{array}\right)
$$

\Rightarrow Rotator might have an impact on the compression factor

$$
\begin{aligned}
\sigma_{z, f} & =\sigma_{\delta, i}\left[R_{56}+\alpha\left(1+f R_{56}\right)\right] \\
\sigma_{\delta, f} & =\sqrt{\sigma_{z, i}^{2} f^{2}+\sigma_{\delta, i}^{2}(1+\alpha f)}
\end{aligned}
$$

Notice that if $\alpha f<0$ the final energy spread gets reduced
\Rightarrow This problem can be overcome using an isochronous arc.

Summary Table for CLIC

Relevant parameters with the spin rotator location, for electrons and positrons:

quantity	before bc1 $^{(*)}$	before bc2	symm.rtml	unit	remarks
beam energy	2.86	9	2.86	GeV	
bending angle	$0(\pi)$	0	$\pi / 2$	rad	
spin depolarization	$0(2.2)$	0	0.56	$\%$	bds excluded
spin precession	$0(10.2)$	0	5.1	turns	",
solenoid field	2.9	9.1	like ${ }^{(*)}$	T	$L=2.6 \mathrm{~m}$
bending angle	13.9	4.4	like $^{(*)}$	deg	$L=1 \mathrm{~m}$
bending magnet	0.38	0.38	like $^{(*)}$	T	$" /$
R_{56}	60.0	6.0	like $^{(*)}$	mm	
$\Delta \gamma \epsilon_{x}$ by synrad emission	0.7	0.003	like $^{(*)}$	$\%$	negligible
total length	134.0	longer	like ${ }^{(*)}$	m	scales with the energy

\Rightarrow New RTML layout: potential problem might be the large solenoid field for the positrons; positron spin rotator before bc2 would be longer; positron spin rotator before bc1: 2.2% depolarization seems to me negligible
\Rightarrow Old RTML layout (symmetric): no major problems, negligible depolarization

- Detailed beam dynamics studies have to be carried out
- Impact of R_{56} on the bunch compressor must be evaluated / use of an isochronous arc

Spin Rotator Optics

Spin Rotator Optics

Spin Rotator Optics

