

ILC e⁻ and e⁺ sources overview

Jim Clarke
STFC Daresbury Laboratory, UK
On behalf of ILC Positron Sources Group

ILC Electron Source

Extract from R&D Plan (Aug 2010)

 Primary on-going R&D for the electron source is the construction and demonstration of a prototype polarised electron source to ILC specifications. In particular, such a facility would enable polarised cathode charge limit investigations in this regime to be quantified.

R&D Milestones:

- mid 2010 Procurement of a coherent V18 laser
- end 2010 Inverted DC gun prototype 2 at 120kV
- end 2011 Inverted DC gun prototype 3 at 200kV
- end 2011 Final laser demonstration
- end 2011 ILC beam demonstration (time structure) using 100kV SLAC SLC gun and cathodes
- mid 2012 Installation of final ILC test facility (gun and laser) at JLab
- end 2012 Final beam tests

ILC Positron Source

- Extract from R&D Plan (Aug 2010)
 - The positron source R&D programme can be separated into two categories:
 - R&D on critical components for the baseline source (undulatordriven).
 - R&D on alternative source technology (or for the auxiliary source).
- Alternative / Auxiliary source R&D
 - end 2011 Boron-nitride window beam tests at KEK
 - end 2011 Liquid lead target beam tests at KEK

ILC Positron Source

- Baseline R&D (Undulator-driven source)
 - end 2010 Completion of rotating target magnetic eddy-current tests
 - end 2010 Conceptual design study (feasibility) for magnetic flux concentrator
 - end 2010 Conceptual design study (feasibility) for liquid lithium lens
 - end 2010 Source parameters based on possible Nb₃Sn undulator design
 - mid 2011 Demonstration of target rotating vacuum seal using 'surrogate target'
 - mid 2011 Horizontal cold-tests of 4m undulator prototype
 - mid 2011 Conceptual design study (feasibility) for magnetic flux concentrator
 - end 2011 Analyse (simulation) of target shock-wave survivability
 - end 2011 Target radiation damage estimates (lifetime modelling)
 - end 2011 Radiation tests of ferrofluid (rotating seal)
 - end 2012 Prototype module of Flux Concentrator (funding permitting)
 - end 2013 Feasibility of Nb₃Sn undulator

ILC Positron Source Integration

- Model now well developed in CAD
- Accurately reflects lattice decks but there are no decks in some parts so have had to make assumptions about layout
- All of the relevant beamlines are included in the model, not just the positron source ones
- The tunnels accurately reflect the current ILC design

Undulator & Fast Abort Dump

Photon Line, BDS Dog-leg, Auxiliary Source

Photon Target, BDS, Auxiliary Source Diagnostic Line

Pre-Accelerator, BDS, Photon Dump

5GeV Booster, BDS, BDS Diagnostic Line and Dump

e+ to DR, e- RTML, BDS, e+ line to main dump

e⁺ to DR, e⁻ RTML, DR

Overall IP Region Layout

Undulator

- 2 x 1.75m undulators successfully tested vertically at RAL
- Specification of 0.86T exceeded
 - 1.15T quench limit
- 4m cryomodule assembled but heat load was too high
 - prevented powering of magnets

Undulator Cryomodule

July 2010 - Top plate cooled by cryocooler

It was seen that it did not take much heat input to change temperature of top plate and HTS/LTS join.

Large copper bars have been inserted to cool top plate and HTS/LTS join directly from the 2nd stage of the cryocooler.

Undulator Cryomodule

- Both undulators now powered individually and together at 215 A (0.86T) – stable for 2 hours
- Both also powered at 252A for > 1hour but then lead quenched above top plate

15:50

– Not enough margin on top plate temperature at high current?

13:55 14:24 14:52 15:21

Time
— Magnet 1 Current

Magnet 2 Current

Steve Carr, STFC

12:28

12:57

13:26

Application of Nb₃Sn

- To generate higher fields or to be able to reduce the period we need to use Nb₃Sn
- Goal would be to reduce period to ~9 mm
- Concerns
 - Packing factor reduced as insulation is thicker
 - Performance of wire at <5T
 - Insulation of former
 - Can no longer wind with ribbon
 - More difficult material to work with (heat treatment)
- Need Nb₃Sn wire to have small diameter for similar filling factor
- Have purchased 1 km of Ø0.5 mm (Ø0.63 mm with glass braid) wire from OST.

Trial Winding Started

Target

Target Prototype Design

Prototype I - eddy current and mechanical stability

Target

Prototype

- Data-taking began Nov 08 and is mostly complete.
- All measurements taken for speeds <1800rpm
- Higher speeds vibration and noise (in air)

- Extrapolating to 2000rpm shows that wheel will be able to operate in immersed fields ~1T without problems.
- Detailed studies of torque Fourier spectra, etc ongoing

Eddy current models

- CARMEN consistent with earlier (rim only) ELECTRA model
- CARMEN in agreement with new LLNL simulation at 10% level
- Prediction of large effect from spokes not seen in data!
- Carrying out conductivity material tests at Lancaster and further magnetic field measurements at DL to try to resolve this

Flux Concentrator

Design work ongoing at LLNL

Coils with magnetic shaping plates (Brechna's Configuration)

- Each plate has a 0.2 cm slit that is out of phase by 60° from the neighboring plates

See detailed talk by Tom Piggott

Positron Yield

Switched Mode Option for Low Energy Running (10Hz Operation)

See talk by Andrei Seryi on Tuesday for latest parameters

Use Different Undulator Parameters

- Assumptions
 - 231 m long undulator
 - 100 GeV drive beam energy
 - Flux Concentrator

Potential alternative to 10Hz running?

Baseline Assessment Workshop # 2 Proposal

(SLAC)

- January 18 2011: Reduced RF, focusing on parameters, running scenarios and development plans
- January 19: Reduced RF focusing on cost and performance projections and potential upgrade paths and summary/recommendation,
- January 20: Positron Source Location, focusing on running scenarios and technical issues
- January 21: Positron Source Location, focusing on cost and performance projections and summary/recommendation.

Discussion expected at SLAC - BAW

1. Reduced RF

- Global Parameters
- Pulse length, n_b, power and cryogenic consumption
- AS impact sources, damping rings and BDS
- Upgrade paths
- R & D strategies
- Cost impact key cost items
- Performance impact luminosity performance and impact on physics

2. Positron Source Location

- Running Scenarios key aspects and luminosity as a function of energy
- Technical parameters operational issues as a function of energy
- Variable repetition rate issues power and cryogenic consumption; sources and damping ring performance
- Cost impact key cost items
- Performance impact luminosity performance and impact on physics

Summary

- SB2009 concept of undulator at end of linac now fully integrated
- R&D progress continues on key areas
 - Undulator
 - Target
 - Flux Concentrator
- Operation at energies <150 GeV affects positron yield
 - Options exist to restore the yield
- BAW2 in Jan 2011 will discuss this in detail and make recommendations