Measuring the CP state of the Higgs through its decay $\mathrm{H} \rightarrow \tau \tau$

Marcel Reinhard
Henri Videau
LLR-École polytechnique

The content of this talk is almost entirely derived from Marcel's thesis

Outline

1) A reminder of the method
2) Higgs production and background
3) Getting the tau direction in the Higgs frame
4) Current results
5) Conclusion: Is there any reason to pursue?

Method

The differential partial width for a τ decay writes:
$\frac{d \Gamma}{d \operatorname{Lips}}=\frac{1}{2 m_{\tau}} G^{2} \frac{v^{2}+a^{2}}{2} \omega(1+\vec{h} \cdot \vec{s}) \quad$ with the polarimeter vector h and the spin s.

Reconstruction of h provides information about the $\mathbf{\tau}$ spin state via the decay distribution

\boldsymbol{h} for different τ decays:

$$
\begin{array}{r}
\tau^{-} \rightarrow \nu_{\tau} I^{-} \bar{\nu}_{l}, \quad(I=e, \mu): \vec{h} \| \hat{\nu}_{1} \\
\tau^{-} \rightarrow \nu_{\tau} \pi^{-}: \vec{h}=-\hat{n_{\pi}} \\
\tau^{-} \rightarrow \nu_{\tau} \rho^{-} \rightarrow \nu_{\tau} \pi^{-} \pi^{o} \quad: \vec{h}=\operatorname{Norm}^{-}\left[2(q \cdot N) \vec{q}-q^{2} \vec{N}\right] \\
N=P_{\tau}-q_{\rho}, q=q_{\pi}-q_{\pi}^{o} \\
\tau^{-} \rightarrow \nu_{\tau} a_{1}^{-} \rightarrow \nu_{\tau} 3 \pi:
\end{array}
$$

$\tau^{-} \rightarrow X$	BR
$e^{-} \bar{\nu}_{e} \nu_{\tau}$	17.85%
$\mu^{-} \bar{\nu}_{\mu} \nu_{T}$	17.36%
$\pi^{-} \nu_{\tau}$	10.91%
$\rho^{-} \nu_{\tau}$	25.52%
$a_{1}^{-} \nu_{\tau}\left(a_{1} \rightarrow \pi^{-} \pi^{0} \pi^{0}\right)$	9.27%
$a_{1}^{-} \nu_{\tau}\left(a_{1} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)$	8.99%
other modes	10.10%

The hadronic decays, where the polarimeter can be reconstructed, offer the full sensitivity,
In the leptonic modes the polarimeter can be approximated by the lepton direction with a much reduced sensitivity and a problem for the tau reconstruction.

Method

The general Yukawa coupling to τ of a CP mixed state H writes: $\mathrm{g} \bar{\tau}\left(\cos \psi+\mathrm{i} \sin \psi \gamma_{5}\right) \tau \mathrm{H}$ $\begin{array}{ll}\text { The t t state is } & \frac{1}{\sqrt{2}}\left[|+-\rangle+\mathrm{e}^{\mathrm{i} 2 \psi}|-+\rangle\right]\end{array} \begin{aligned} & \left.\frac{1}{\sqrt{2}}||+-\rangle+|-+\right\rangle \text { is spin } 0, \text { C } \\ & \left.\left.\frac{1}{\sqrt{2}}||+-\rangle-|-+\right\rangle\right] \text { is CP odd }\end{aligned}$

With $\theta^{ \pm}$and $\varphi^{ \pm}$being the polar and azimuthal angles of the polarimeter in the $\tau^{ \pm}$rest frames wrt. a z-axis parallel to the τ^{-}direction for \boldsymbol{h}^{-}and opposite to the τ^{+}direction for \boldsymbol{h}^{+}

Taking into account the full helicity correlation

The correlated decay distribution writes :

$$
\mathrm{W}^{\mathrm{H}}(\cos \theta+, \cos \theta-, \Delta \phi) \propto 1+\cos \theta^{-} \cos \theta^{+}-\sin \theta^{-} \sin \theta^{+} \cos (\Delta \phi-2 \psi)
$$

$$
\Delta \phi=\phi^{+}-\phi^{-}
$$

Integrating over the polar angles $W^{H}(\Delta \phi)=\frac{1}{2 \pi}\left[1-\frac{\pi^{2}}{16} \cos (\Delta \phi-2 \psi)\right]$

The distribution of $\Delta \varphi$ provides information about ψ Reconstruct τ directions and polarimeters !

The study has been done with the simplest decay modes: π and ρ

Assumption: at ILC the transverse position of the interaction point is "perfectly" known run by run.
The longitudinal position is determined with an adequate accuracy by knowing the Z decay products.

The knowledge of the centre of mass and of the Z provides a way to determine the Higgs 4 -vector up to radiation effects, in particular beamstrahlung.
We will first make use explicitly of this knowledge in the reconstruction of the taus then will show that in fact we need only two constraints and then be insensitive to beamstrahlung.

Method

Simple kinematical description in the tau CM, in the" Higgs CM and in the laboratory for the pion case

In the τ CM
π et v are back to back

$$
\mathbf{P}_{\tau} \cdot \mathbf{P}_{\pi}=\mathrm{E}_{\pi}^{*} \mathrm{~m}_{\tau}=\frac{\mathrm{m}_{\tau}^{2}+\mathrm{m}_{\pi}^{2}}{2}
$$

In the Higgs CM
the two taus are back to back up to a radiation from a τ. their energy and momentum modulus are known ($m_{H} / 2$) as well as the angle between the momentum and the π.

$$
\mathbf{P}_{\tau} \cdot \mathbf{P}_{\mathrm{H}}=\mathrm{E}_{\tau}^{*} \mathrm{~m}_{\mathrm{H}}=\frac{\mathrm{m}_{H}^{2}}{2}
$$

The τ momentum lies then on a sphere and on a cone around the π.
Its locus is then a circle intersection of the sphere and the cone. It lies then in a plane.
In the laboratory
Going from the Higgs CM to the laboratory, the sphere becomes an ellipsoid and the plane a plane.
The locus is then an ellipse.
The Higgs y being close to 1 it is almost a circle.

> In view of the τ decay length, its trajectory can be treated as a straight line.
> In the same way the π trajectory can be approximated by a straight line passing through the point of closest approach to the interaction point and following the momentum.

The τ momentum is collinear to its trajectory and leans on the π trajectory. It is then in the plane containing the interaction point, the decay point and the π momentum.
This plane intersects the ellipse in two points exhibiting two solutions, but one only, in the case of the π corresponds to a decay after the interaction.

Geometrical vision: on the left the lab system on the right the Higgs system on the top view plane containing the Higgs line of flight and the π on the bottom the view perpendicular

Parametrisation of a τ decaying into πv knowing the creation point I, and the π trajectory

The τ trajectory is, at the size of the decay (mm), a straight line, the π trajectory as well.
The latter is defined by the point of closest approach to $\mathrm{I}, \mathrm{M}_{\pi}$ and the π momentum.

The τ decay space-time point D is on the π trajectory

In 4 dimensions, calling I the interaction point:

$$
\begin{array}{lrl}
\mathbf{I}=(\mathbf{0}, \overrightarrow{\mathrm{O}}) \\
\mathbf{M}_{\pi}=\left(\mathrm{t}_{\pi}, \mathrm{d}_{\pi} \hat{\mathrm{n}}_{\pi}\right) & & \\
\mathbf{P}_{\pi}=\left(\mathrm{E}_{\pi}, \overrightarrow{\mathrm{p}}_{\pi}\right) & \text { By construction of } \mathrm{M}_{\pi} & \begin{array}{l}
\hat{\mathrm{n}}_{\pi} \cdot \overrightarrow{\mathrm{p}}_{\pi}=0 \\
\hat{\mathrm{n}}_{\pi} \cdot \hat{\mathrm{n}}_{\pi}=1
\end{array} \\
\begin{array}{lrl}
\mathbf{P}_{\tau}=\left(\mathrm{E}_{\tau}, \overrightarrow{\mathrm{p}}_{\tau}\right) & \text { There are three unknowns: } & \mathrm{al} \quad \mathrm{~b} \quad \mathrm{t}_{\pi} \\
\mathbf{D}=\mathrm{a} \mathbf{P}_{\tau} & & \\
\mathbf{D}=\mathbf{M}_{\pi}+\mathrm{b} \mathbf{P}_{\pi} & & \mathbf{P}_{\tau} \cdot \mathbf{P}_{\pi}=\frac{\mathrm{m}_{\tau}^{2}+\mathrm{m}_{\pi}^{2}}{2} \\
& \text { and two equations } & \mathbf{P}_{\tau} \cdot \mathbf{P}_{\tau}=\mathrm{m}_{\tau}^{2}
\end{array}
\end{array}
$$

The decay can therefore be expressed as a function of only one parameter, idem for the ρ decay.

Quality of the reconstruction
τ lifetime measurement provides a criterion for the reconstruction quality

Measurement error smaller than the decay angle

Production and background

We consider a Higgs of mass 120 GeV produced by Higgsstrahlung at 230 GeV peak of the cross section.
The ZZ background

The study is done with $Z \rightarrow \mu \mu$

No CP-odd ZZH coupling at tree level !
\rightarrow suppression with $\cos ^{2} \boldsymbol{\Psi}$
effect of beam polarisation

Polarisation $\left(\mathrm{e}^{-} ; \mathrm{e}^{+}\right)$	$\sigma(\mathrm{ZZ}) \mathrm{fb}$	$\sigma(\mathrm{ZH}) \mathrm{fb}$	$\sigma(\mathrm{ZH}) / \sigma(\mathrm{ZZ}) \%$
$0.0 ; 0.0$	1139	214.4	18.8
$0.8 ; 0.3$	1860.1	306.8	16.5
$0.8 ; 0.6$	2347.9	384.4	16.4
$0.8 ; 0.0$	1517.3	252.9	16.7

$\mathscr{L}=500 \mathrm{fb}^{-1}$	$\tau \rightarrow X$	$\tau \rightarrow \pi, \rho$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH} \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}$	417	54
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZZ} \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}$	2150	279

Henri Videau Genève octobre 2010
$\frac{\mathrm{S}}{\mathrm{B}} \approx \frac{1}{5} \begin{aligned} & \beta \gamma_{H}=0.388 \\ & \mathrm{p}_{\mathrm{H}}=46.5 \mathrm{GeV} \\ & \mathrm{BR}(\mathrm{H} \rightarrow \pi)=8 \% \\ & \mathrm{BR}\left(Z_{\rightarrow} \rightarrow \mu \mu\right)=3.4 \%\end{aligned}$
Few numbers:
$\mathrm{E}_{\mathrm{CM}}=230 . \mathrm{GeV}$
$\mathrm{m}_{\mathrm{z}}=91 \mathrm{GeV}$
$\mathrm{m}_{\mathrm{H}}=120 \mathrm{GeV}$
$\mathrm{V}_{\mathrm{H}}=1.0725$
$\beta_{H}=0.36$

Production and background

$Z \rightarrow \mu^{+} \mu^{-}$decay is chosen for excellent determination of the $Z(\rightarrow H) R F$
\longrightarrow low statistics
Need to extend the event sample:
$-Z \rightarrow e^{+} e^{-}, q \bar{q}(q=u, d, s)$, multiply signal statistics by 14.6
for c and b need to sign the absence of v

- Include a_{1} channels (also 3-prong) gain 2.25 , but model
- Include leptonic channels? $\quad 10.91$ (p) $+25.52(r)=36.43 \%$
it I possible to reconstruct the tau direction from
the Higgs system and the opposite tau, but reduced sensibility

As the polarimeters depend on the decay channel we need to identify the different channels

Distinguish between hadronic decay channels mostly by counting associated photons !

Done with GARLIC

Production and background

Decay selection: signal channels

Production and background

Decay selection

$[\%]$	$\pi^{\text {sim }}$	$\rho^{\text {sim }}$	$\mathrm{a}_{1}^{\text {sim }}$	other
$\pi^{\text {rec }}$	95.5	2.7	0.6	49.1
$\rho^{\text {rec }}$	4.2	90.2	12.5	21.8
$\mathrm{a}_{1}^{\text {rec }}$	0.0	5.9	85.0	19.7
rejected	0.3	1.2	1.9	9.3

High signal rejection due to efficiency

$[\%]^{\text {a }}$	$\pi \pi^{\text {sim }}$	$\pi \rho^{\text {sim }}$	$\pi \mathrm{a}_{1}{ }^{\text {sim }}$	$\rho \rho^{\text {sim }}$	$\rho \mathrm{a}_{1}^{\text {sim }}$	$\mathrm{a}_{1} \mathrm{a}_{1}{ }^{\text {sim }}$	other
$\pi \pi^{\text {rec }}$	59.4	1.4	0.5	0.2	0	0	0.6
$\pi \rho^{\text {rec }}$	8.7	46.5	8.1	3.3	0.4	0	1.0
$\pi \mathrm{a}_{1}{ }^{\text {rec }}$	0	3.8	46.7	0	0.8	0	0.4
$\rho \rho^{\text {rec }}$	0	1.6	0.9	41.8	4.6	1.0	0.4
$\rho \mathrm{a}_{1}^{\text {rec }}$	0	0	0.5	5.6	39.6	9.4	0.6
$\mathrm{a}_{1} \mathrm{a}_{1}{ }^{\text {rec }}$	0	0	0	0	2.5	30.2	0.1
other	31.9	46.7	43.3	49.1	52.1	59.4	96.9

ZZ Background rejection

Cut on the correlation between polar angles

Cut on recoil mass to reject ZZ background and beamstrahlung
$119 \mathrm{GeV}<M_{\text {reсоil }}^{\mathrm{Z} \rightarrow \mu \mu}<129 \mathrm{GeV}$
Rejection: 96\% B, 9\%S

Signal and background

Sensitivity
H $\mathrm{W}^{H}\left(\cos \theta^{+}, \cos \theta^{-}, \Delta \phi\right) \propto 1+\cos \theta^{-} \cos \theta^{+}-\sin \theta^{-} \sin \theta^{+} \cos (\Delta \phi-2 \psi) \quad \Delta \phi=\phi^{-}-\phi^{+}$
$\underline{Z} \mathrm{~W}^{\mathrm{Z}}\left(\cos \theta^{+}, \cos \theta^{-}, \Sigma \phi\right) \propto 1-\cos \theta^{-} \cos \theta^{+}-\sin \theta^{-} \sin \theta^{+} \cos (\Sigma \phi) \quad \Sigma \phi=\phi^{-}+\phi^{+}$
With $\cos \theta^{+} \cos \theta^{-}>-0.4$:

Rejection: 19\% B, 5\% S, 3\% weighted S
$\frac{S}{B} \approx 4.5$

$Z \rightarrow \mu^{+} \mu^{-}$

$$
\begin{aligned}
& \mathrm{Z} \rightarrow \mu^{+} \mu^{-} \\
& \mathrm{e}^{+} \mathrm{e}^{-}
\end{aligned}
$$

$$
q \bar{q} \quad q=u, d, s
$$

x^{2} fit with the function

$$
\mathrm{W}_{\text {fit }}(\Delta \phi)=\mathrm{a}(1-\mathrm{bcos}(\Delta \phi-2 \mathrm{c}))
$$

With a sample of $300 \mathrm{fb}^{-1}$ taking the Z decays in e, μ and light quarks
we can exclude a phase larger than $\pi / 8$ at 4.5σ

For such a phase the cross section is reduced by 15% (included in the analysis) but the information from the measurement of the cross section is not included.
may well be, if CP violation proven, more effective than spin correlations!
using additional modes and with an adequate PID, could be done with $100 \mathrm{fb}^{-1}$ but that needs quite some work
specially to improve dramatically the quality of PID

Marginal?

