Measurement of Top-Yukawa coupling at the early stage ILC

R. Yonamine, K. Ikematsu^A, T. Tanabe^B K. Fujii^C, Y. Kiyo^C, Y. Sumino^D, H. Yokoya^E

Sokendai (KEK), Siegen U.A, Tokyo U.B, KEKC, Tohoku U.D, CERNE

 $\mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$

Gauge Principle

Symmetry Breaking Generation

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

 $\mathscr{L}_{Gauge} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Top-Yukawa coupling

indirect measurement direct measurement

• indirect measurement

The Higgs sector offers a broad range of possibilities for new physics ...

There is a possibility of a new particle X being in the loop.

difficult to distinguish X loop and top loop!

• direct measurement promising at ILC!!

main decay mode (H -> bb 68%) can be used

gg -> ttH @ LHC

e+e-->ttH@ILC

Measurement of top-Yukawa coupling at 500 GeV

Past work estimated the measurement accuracy around E_{cm} = 700 - 800 GeV where the cross section reaches maximum.

About TTH Process

500 GeV is nearly threshold of ttH.

Cross section is smaller than 1 fb!

But ...

tt threshold correction enhances ttH production (and also ttZ)

This makes it possible to perform the direct g_t measurement at 500 GeV

Invariant mass dist. for tt sysytem

ttH

Feature of signal process (e+e- -> ttH)

event signature in our study

ttH ->bWbWbb (H -> bb : 68%) 8jet, 1-lepton + 6jet, and 2 lepton + 4-jet

At E_{cm} = 500 GeV, ttH production is dominated by s-channel γ / Z exchange.

contains g_t

does NOT contains

 g_t

There is contribution to ttH from Higgs-strahlung. This diagram doesn't contain top-Yukawa coupling. But its contribution is negligible because of small cross section.

The cross section for ttH, tt, ttZ and ttg*(g->bb) are shown in left plot, which includes NRQCD correction to ttH and ttZ.

 $\sigma_{ttH} = 0.45\,\mathrm{fb}$ without beam pol.

tt迁

Feature of signal process (e+e- -> ttH)

event signature in our study

ttH ->bWbWbb (H -> bb : 68%) 8jet, 1-lepton + 6jet, and 2 lepton + 4-jet

At E_{cm} = 500 GeV, ttH production is dominated by s-channel γ / Z exchange.

contains g_t

does NOT contains

 g_t

There is contribution to ttH from Higgs-strahlung. This diagram doesn't contain top-Yukawa coupling. But its contribution is negligible because of small cross section.

The cross section for ttH, tt, ttZ and ttg*(g->bb) are shown in left plot, which includes NRQCD correction to ttH and ttZ.

 $\sigma_{ttH} = 0.45\,\mathrm{fb}$ without beam pol.

Backgrounds

Main backgrounds

ttZ followed by Z -> bb (15%) same final state (ttZ -> bWbW bb)

irreducible background

tt threshold correction enhances σ_{ttz} from 0.7fb to 1.3fb

 ttg^* followed by $g^* -> bb$ same final state ($ttg^* -> bWbWbb$)

irreducible background

- tt huge cross section (500fb)
 - hard gluon emission from bottom quarks mimic signal
 - even a tiny fraction of mis-reconstruction or b-tagging failure leads to significant background contamination.

The other possible backgrounds?

 $W*W*/Z*Z \rightarrow ttbb$ small contribution (< 0.01fb)

qq (5 flavors), WW, ZZ, ZH have different signature from ttH signal.

· can be separated with 4×b tagging, event shape cut and mass cut

We generated signal(ttH) and main backgrounds (ttZ, ttg*, tt).

Basic idea to reduce backgrounds

backgrounds	tt	ttZ	ttg*
event shape compared to ttH	Effective! different	same	same
maximum number of b-jets	2	4	4
Higgs candidate(Z, g*) mass compared to H	none	Effective! different	Effective! different

- Event generator : physsim
 - full helicity amplitude calculation by HELAS
 - MC phase space integration by BASES/SPRING

ISR & beamstrahlung are included

NRQCD correction for ttH and ttZ is included

Dedicated ttg generator with correct color strings

- Parton shower & hadronization: pythia
- Fast detector simulation: JSF

Detector parameters

Detector	Performance	Coverage
Vertex detector	$\sigma_b = 7.0 \oplus (20.0/p)/\sin^{3/2}\theta\mu m$	$ \cos \theta \le 0.90$
Central drift chamber	$\sigma_{P_T}/P_T = 1.1 \times 10^{-4} p_T \oplus 0.1\%$	$ \cos \theta \le 0.95$
EM calorimeter	$\sigma_E/E=15\%/\sqrt{E}\oplus 1\%$	$ \cos \theta \le 0.90$
Hadron calorimeter	$\sigma_E/E=40\%/\sqrt{E}\oplus 2\%$	$ \cos \theta \le 0.90$

ttH L+6-jet mode event display

ttH 8-jet mode event display

- Charged particle tracks
- Signals on H-Cal.
- Signals on E-Cal.

Cut values

the following values were chosen to yield optimized value of measurement significance.

6-Jet + lepton	8-Jet	
# of isolated lepton = 1	# of isolated lepton = 0	
$Y_{5->4} = 0.005$	$Y_{8->7} = 0.00082$	
thrust > 0.85	thrust > 0.8	
b-tagging (at least 4 b-jet)	b-tagging (at least 4 b-jet)	
140 GeV < top mass < 205 GeV	136 GeV < top mass < 205 GeV	
90 GeV < higgs mass < 150 GeV	85 GeV < higgs mass < 150 GeV	

Motivation

Cut flow (6Jet + lepton, lumi. = 1 ab-1, unpolarized beams)

Cut	ttH(6J+L)	ttH (8J, 4J+2L)	tt	ttZ	ttg* (g* -> bb)	significance
no cut	167	212	514076	1340	697	0.23
Single isolated lepton	106.1	28.6	180112	441	242	0.25
thrust < 0.85	104	27.2	147518	423	225	0.27
Y _{5->4} > 0.005	86.1	17.4	10407	264	84.8	0.82
4×b-tagging	33.9	2.9	137	34.2	28.3	2.21
mass cut	28.5	1.0	27.4	23.6	11.3	2.97

H -> bb (68%) Z->bb (15%)

Motivation

Cut	ttH(8J)	ttH (6J+L, 4J+2L)	tt	ttZ	ttg* (g* -> bb)	significance
no cut	172	207	514076	1340	697	0.24
Isolated lepton veto	158	54	306582	752	418	0.28
thrust < 0.8	153	49.4	240148	716	377	0.31
Y _{8->7} > 0.00082	104	13.5	9651	296	79.1	1.03
4×b-tagging	61.3	7.0	357	63.4	46.2	2.65
mass cut	43.8	0.4	93.4	34.5	13.8	3.21

H -> bb (68%) Z->bb (15%)

6-jet + lepton

Mass plot

Top Mass

Higgs Mass

Beam polarization $(P_{e-}, P_{e+}) = (-0.8, +0.3)$ Integrated luminosity lab^{-1}

Result summary

lab-1

Beam pol.	6Jet+	lepton	8Jet		
(e-,e+)	S/N	significance	S/N	significance	
(0,0)	28.5 / 63.3	2.97	43.8 / 142.1	3.21	
(-0.8,+0.3)	48.2 / 107.3	3.87	73.6 / 244.4	4.13	

Combined results

lab-1

Beam pol. (e-,e+)	Combined significance	Combined $\Delta g_{ m t}/g_{ m t}$
(0,0)	4.37	11.4%
(-0.8, +0.3)	5.66	8.8%

(stat. error only)

Summary & Plan

We assumed early stage ILC

- $-E_{cm} = 500 \text{ GeV}$
- luminosity 1 ab-1
- polarized beams (-0.8, +0.3)

Fast simulation studies suggests

~10% accuracy on top-Yukawa coupling is achievable.

We will move on to full simulation studies.

Backup

Direct measurement at LHC

may be possible at LHC using H -> $\gamma\gamma$, $\tau\tau$ but in this case needs accurate BR (H-> $\gamma\gamma$, $\tau\tau$) information

Or need to assume certain model.

Jet Clustering

Motivation

using Forced n-jet clustering

Forced n-jet clustering

1. Putting together tracks around a seed track until \mathcal{Y} reaches a certain value (Ycut).

while ...

$$Y_{ij} = \frac{\min\{E_i^2, E_j^2\}(1 - \cos \theta_{ij})}{E_{\text{cm}}^2}$$

(Durham jet clustering)

2. Forced n-jet clustering always makes n jets by adjusting Y_{CUT} automatically for every event.

If we apply Forced 6-Jet Clustering for 4-Jet event, Yout will be small.

b-tag

Motivation

n-sig method

n-sig method

Given the distance between a tracks and IP, ℓ and the measurement error, \mathcal{O}_ℓ

define the track as "off vertex track" if is over a certain value

define the jet as b-jet if the number of "off vertex tracks" in a Jet is over a certain value.

Definition of polarization

$$P_{-}^{e} = -\frac{N_{-}^{e} - N_{+}^{e}}{N_{+}^{e} + N_{-}^{e}}$$
 $N_{-}^{e} : \# \text{ of left handed electrons}$

$$P_{+}^{p} = \frac{N_{+}^{p} - N_{-}^{p}}{N_{+}^{p} + N_{-}^{p}}$$
 $N_{+}^{p} : \# \text{ of right handed positrons}$

gtth measurement accuracy

$$\frac{\Delta g_{tth}^2}{g_{tth}^2} = \frac{\Delta \sigma_{tth}}{\sigma_{tth}} = \frac{\Delta (N_{obs}/(\eta_{all} \cdot L))}{N_{tth}/(\eta_{all} \cdot L)} = \frac{\sqrt{(\sigma_{tth} \cdot \eta_{tth} + \sigma_{BG} \cdot \eta_{BG}) \cdot L}}{\sigma_{tth} \cdot \eta_{tth} \cdot L}$$

χ^2 definition

$$\chi^2 = \frac{(m2j - M_H)^2}{\sigma_H^2} + \frac{(m2j - M_{W_1})^2}{\sigma_{W_1}^2} + \frac{(m3j - M_{t_1})^2}{\sigma_{t_1}^2} + \frac{1 \text{ Lepton + 6Jet mode analysis}}{mode analysis} + \frac{(m2j - M_{W_2})^2}{\sigma_{W_2}^2} + \frac{(m3j - M_{t_2})^2}{\sigma_{t_2}^2}$$
8Jet mode analysis

ttH analysis

6 jet + 1 lepton mode

- Find isolated lepton from W (semileptonic decay)
- Jet clustering to be 6 jet (Durham algorithm)
- Event shape cut (thrust, jet clustering)
- Find 4 b jets.
- Invariant mass cut for top and higgs candidates.

8 jet mode

- Isolated lepton veto
- Jet clustering to be 8 jet (Durham algorithm)
- Event shape cut (thrust, jet clustering)
- Find 4 b jets.
- Invariant mass cut for top and higgs candidates.

situation at LHC

- at the LHC, direct measurement of the top Yukawa coupling (pp->ttH) is thought to be impossible due to too much background
- through indirect measurement involving gluon fusion with a top loop,

g_t measurement precision is estimated to be ~15% for M_H=120 GeV with 2 x 300 fb⁻¹ data at E_{cm} = 14 TeV

T. Tanabe

data samples

process	xsec (fb)	generated events	equivalent luminosity (ab ⁻¹)
ttH	1.24	50,000	40.3
ttZ	4.04	50,000	12.4
ttg (g->bb)	1.93	50,000	25.9
tt	1440.	7,000,000	4.9
ttH	0.540	50,000	92.6
ttZ	1.324	50,000	37.8
ttg (g->bb)	0.859	50,000	58.2
tt	618	5,000,000	8.1

e-/e+ polarization = (-1.0, +1.0)

e-/e+ polarization = (+1.0, -1.0)