Detector studies for CLIC

Marcel Stanitzki STFC-Rutherford Appleton Laboratory

- The CLIC CDR
- The CLIC experimental conditions
- Detectors for CLIC
- Recent Highlights

The CLIC CDR

CLIC Conceptual Design Report

- Three volumes (due August 2011)
 - Vol. 1 Executive Summary
 - Vol. 2 Accelerator
 - Vol. 3 Physics & Detectors
- Will focus on Vol. 3
 - It will be carried by the entire Linear Collider Community, the Editors represent all regions
 - Input from ILC detector concepts, R&D collaborations, theorists
 - CDR to focus on 3 TeV case
- Goals of Vol. 3
 - Describe the CLIC physics potential
 - Show that CLIC physics can be measured with adequate precision

CDR Main Editors

- Four Main Editors were appointed
 - Lucie Linssen (CERN)
 - Akiya Miyamoto (KEK, Asia)
 - Marcel Stanitzki (RAL, Europe)
 - Harry Weerts (ANL, Americas)
- Responsible for the overall CDR
 - Individual Chapters handled by Chapter Editors
- First point of contact for questions/contributions

CLIC CDR Editors

CDR Editorial team

Conditions at CLIC

CLIC Bunch structure

- 312 bunches, 0.5 ns bunch spacing
- 50 Hz repetition rate
- Luminosity profile
 - 30 % of the Events are inside
 1% nominal Energy interval
- Beam Background more challenging
 - Higher rates

Beam Backgrounds

- Incoherent e⁺e⁻ Pairs
 - Photons interacting with other electron/photon
 - Peak at lowest Energies
 - few 10⁵ particles/BX
- Coherent e⁺e⁻ pairs
 - Direct photons conversion in strong fields
 - Cutoff at near 10 mrad
 - 10⁸ particles/BX

γγ→ Hadrons

- 3.3 events/BX
 - 30 particles hit detector
 - Deposit ~ 50 GeV
 - Forward-peaked
- 15 TeV dumped in the detector per 156 ns bunch train !
- Reconstruction Challenge
 - Mini-jets
 - Overlap with physics events

This means for the detectors

- Due to beam-induced background and short time between bunches:
 - High occupancy in the inner regions (incoherent pairs)
 - ⁻ Jets scale and resolution are affected ($\gamma\gamma \rightarrow$ hadrons)
- Time-stamping is a must for almost all subdetectors
- Narrow jets at high energy
 - Calorimeter has to measure high-energy particles (leakage)
 - Track separation in dense jets

The validated ILC detectors

- Both ILD & SiD build on
 - particle flow paradigm
- ILD & SiD have complementary approaches
 - Field, radius, tracking ...
- CLIC detector concepts are based on SiD and ILD.
 - Modified to meet CLIC requirements

Modifications for CLIC

- Crossing angle
 - Changed to 20 mrad
- Vertex detector
 - Moves outwards to r~ 2.5-3.0 cm
 - due to beam background
- HCAL
 - Barrel: 7.5 $\Lambda_{_i}$, 1 cm W plates
 - Endcaps: 7.5 $\Lambda_{i_{j_{i_{i_{j}}}}}$ 2 cm steel plates
 - Changes in Coil radius and length
- Modified MDI/Forward region

CLIC_SiD

	CLIC_SiD	CLIC_ILD				
Vertex detector	inner radius 2.7 cm 5 single barrel layers 6 single layer forward disks	inner radius 3.1 cm 3 double layers 3 double layer pixel forward disks				
Tracker	Si, unchanged	TPC, unchanged				
ECAL	unchanged	unchanged				
HCAL Barrel	W+Scintillator, 3x3 cm tiles 7.5 Λ_1 cm plates W+RPC, 1x1 cm tiles 7.5 Λ_1 cm plates	W+Scintillator, 3x3 cm tiles 7.5 Λ_i 1 cm plates				
HCAL Endcap	Fe+Scintillator, 3x3 cm tiles 7.5 Λ_1^2 cm plates Fe+RPC, 1x1 cm tiles, 7.5 Λ_1^2 cm plates	Fe+Scintillator, 3x3 cm 7.5 Λ_i 2 cm plates				
Coil	5T, Radius=2.68 m	4T, Radius=3.35 m				

More details :

https://twiki.cern.ch/twiki/bin/view/CLIC/ClicCDRNumbers

Science & Technology Facilities Council Rutherford Appleton Laboratory

Rationale for 7.5 Λ_i

- Study done using PandoraPFA
- Tail-Catcher (points) brings little improvements
- 7.5 $\Lambda_{_{\rm i}}$ gives good jet energy resolution up to 1.5 TeV

TimeStamping with the TPC

- Barrel time stamping
 - Combination with an external silicon detector
- TPC measures time since beginning of the bunch train
 - $z = (t_{drift} + BX \Delta tBX)v_{drift}$
 - The silicon sensor measures z directly
- From this the time stamp BX ΔtBX is determined

Si Tracking in CLIC_SID_CDR

- Findable tracks
 - θ > 8°
- Different strategies
 - No of hits required
- Using dijets
 - Z→uds
 - E_{CMS}=3 TeV

W-HCAL studies

- Tungsten as absorber [%] 45 GeV Jets $Z \rightarrow uds (|cos\theta| < 0.7)$ 00 GeV Jets rms₉₀/E_{jet} Larger slow neutron 250 GeV Jets component Slower shower development Timing cuts important Drive Resolution 10² 10³ 10 Sets scale for time stamping ECAL/HCAL Timing Cut [ns]
- Build prototype
 - Verify Simulation
 - Test beam is starting

W-HCAL testbeam

- Prototype tests together with CALICE
- W -Absorbers
 - 30-40 layers
 - Thickness1 cm
 - 80 cm Ø
- Different active materials
- Start Nov 2010 with PS beam
 - 30 W plates

Rutherford Appleton Laboratory

 AHCAL Scintillator planes 3x3 cm

- CLIC uses PFA-based detectors
 - Algorithm needs tuning for high energies
- Current Status is very promising

CLIC_ILD, Ej	45GeV	100GeV		250GeV	500GeV	1T	eV	1.5TeV	
PandoraPFANew, rms90(Ej) / Ej	3.55 ± 0.11	2.93 ± 0.08		2.84 ± 0.07	2.96 ± 0.04	3.19 ± 0.04		3.21 ± 0.05	
ILD, Ej	45GeV	45GeV		100GeV	180GeV		250GeV		
PandoraPFANew, rms90(Ej) / Ej	3.62 ± 0.0	5	:	2.94 ± 0.04	3.10 ± 0.04) ± 0.04		3.29 ± 0.04	

Muon ID in dense jets

- Pandora clusters the hits outwards
 - In dense environments it occasionally has wrong hit assignment for muon hits in the HCAL.
- To prevent this:
 - Match Inner Detector tracks to tracks in the yoke.
 - Assign HCAL hits along the new defined muon track

Green and purple are two reconstructed PFOs.

29

- DIRAC developed by LHCb
 - Aim: provide easy access to GRID resources
 - User-friendliness & more stability
 - Built-in production system
- ILCDIRAC implements ILC specific features
 - Software: Whizard, Mokka, Marlin, SLIC, LCSIM
 - 6 months to develop ILCDIRAC
- Active users are not only at CERN: RAL and LAL

Science & Technology Facilities Council

Rutherford Appleton Laboratory

Generated on 2010-10-14 08:26:40 UTC

CDR Benchmarks

- 5+1 benchmark channels for the CDR
- At 3 TeV
 - $e^+e^- \rightarrow Hv_e^-v_e^- H \rightarrow bb$, $\mu\mu$ (m_H=120 GeV)
 - $e^+e^- \rightarrow H^+H^- \rightarrow tbtb \ e^+e^- \rightarrow HA \rightarrow bbbb \ (m_{H,H^+,A}=900 \ GeV)$
 - $e^+e^- \rightarrow \widetilde{q}_R \widetilde{q}_R m_{\widetilde{q}R} = 1.1 \text{ TeV}$
 - $e^+e^- \rightarrow \tilde{I}^+ \tilde{I}^-$ m₁=423,696 GV
 - $e^+e^- → \chi^+ \chi^-, \chi^0 \chi^0$ m χ⁰=340 GeV
- At 500 GeV
 - $e^+e^- \rightarrow tt$ (same as ILC Benchmark)

A First look

- Example : Smuon analysis
- Currently using K' point
 - $\tilde{\chi_1}$ = 554.3 GeV
 - $\widetilde{\mu}_{R}$ =1108.8 GeV
- Full simulation
- Measured
 - $\chi_1 = 569.1 \pm 1.5 \text{ GeV}$
 - μ_{R} =1118.4± 3.0 GeV

- CLIC CDR is a collaborative effort of the LC community
 - Editors represent all the regions
- CDR is due in August 2011
 - Oral presentation to the Scientific Policy Committee in June 2011
- More details
 - 25 scheduled presentations on Detectors for CLIC in the parallel sessions
 - LCD notes http://lcd.web.cern.ch/LCD/Documents/Documents.html
- Acknowledgments
 - Everybody in the CLIC detector study group