Lawrence Livermore National Laboratory

Design work for the photon collider laser

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 October 21, 2010 ILWC2010 Geneva Switzerland

UCRL-XXXX-12345

Conceptual design for a resonant stacking cavity by DESY-Zeuthen and MBI*

- Design for L-band accelerator
 - 369 ns pulse spacing (111 m cavity length)

* I.Will, T. Quast, H. Redlin andW. Sander, "A Laser System For The TESLA Photon Collider Based On An External Ring Resonator", *Nucl. Instrum. Meth.* A 472 (2001) 79.

G. Klemz, K. Monig, I. Will, "Design study of an optical cavity for a future photon-collider at ILC", *Nucl. Instrum. Meth.* A 564 (2006) 212.

Lawrence Livermore National Laboratory

A resonant stacking cavity greatly reduces the required laser average power

- Only ~10⁻⁹ of laser energy used in each interaction
 - Reuse photons, replenish cavity losses
- Coherent addition of pulses in cavity requires extreme control of laser and cavity parameters
- Goal of 300-400 enhancement (30 mJ input, 10 J interaction beam)

Resonant stacking cavity

Baseline case: input coupler R=0.996, cavity mirrors R=0.998

Lawrence Livermore National Laboratory

Enhancement as a function of mirror reflectivities

- Impedance-matched cavity (equal cavity and input coupler reflectivity) gives greatest enhancement for given cavity reflectivity
- For given input coupler, increasing cavity reflectivity increases enhancement

There is an optimum input coupler to minimize total input energy

- Lower reflectivity input coupler gives faster cavity loading, but reduced enhancement
- Total energy \propto (# loading pulses to 95% + 2820)/enhancement

Lawrence Livermore National Laboratory

Resonant cavity enhancement puts stringent requirements on the laser and optics

- Dispersion in resonant cavity
- Phase noise
- Cavity length/laser repetition frequency
- Amplitude noise
- Thermal changes to refractive index in amplifiers/optics
- Pointing stability

- Coating damage due to scattered electrons and synchrotron radiation can reduce mirror reflectivity
 - Seven mirrors for total R=0.998 \Rightarrow R=0.9997 each

Total cavity Group Velocity Dispersion (GVD) should be less than 100 fs²

 Low-dispersion mirrors can be manufactured with < 10 fs² GVD

1 ps (FWHM) transform-limited input pulses

Lawrence Livermore National Laboratory

Phase noise

- 0.10 wave (650 mrad) achieved in CEP stabilized Ti:Sapphire system (1.4 mJ @ 1 kHz)*
- 0.03 wave (171 mrad) achieved with single amplifier (21 nJ, 75 MHz)**

* E. Gagnon, et al., Opt. Lett. 31, 1866 (2006)

```
** A. Ozawa, et al., New J. Phys. 11, 083029 (2009)
Lawrence Livermore National Laboratory
```


Linear phase ramp through bunch (cavity length stability or thermal loading)

Energy jitter

 Large jitter acceptable with no B-integral (phase) variation

Lawrence Livermore National Laboratory

Option:UCRL#

11

Energy jitter with B-integral

- Nonlinear effects transform energy jitter into phase jitter
- Typical short-pulse lasers run with B<2, but some fiber-laser designs have B>5

Phase:

$$\phi = \int k \, dz = \frac{2\pi}{\lambda} \int n(r,t) \, dz = \frac{2\pi n_o L}{\lambda} + B(r,t)$$

B-integral (nonlinear phase accumulation):

$$B(r,t) = \frac{2\pi}{\lambda} \int \gamma I(r,t) dz$$

Laser system concept

Pulse injection

Lasermetrics Pockels cell and driver

Lawrence Livermore National Laboratory

- "Off-the-shelf" technology
 - Similar to lasers for ILC photogun
 - Special photon collider requirements:
 - Need phase-locked oscillator at 1 μm

Intermediate Amplification

Cutting Edge Optronics' slab pumphead, the Whisper MiniSlab™

Cutting Edge Optronics RBA PowerPULSE

- "Off-the-shelf" technology exists to reach this power level
- Must be adapted to ILC pulse format pulsed diode pumping
- At this level non-linear and thermal effects begin to be important

Lawrence Livermore National Laboratory

Main Amplifier

- Not commercially available
- Basic enabling technologies exist:
 - Pulsed diode pumping
 - Thermal management
- Must be adapted to ILC pulse format

LLNL Mercury He gas cooling

Lawrence Livermore National Laboratory

Final amplifier design must balance energetics with heat removal

- Would like to maintain spatially uniform temperature profile through pulse train
- Would like to remove all heat before next train
 - High thermal conductivity and low heat capacity for gain medium
- Thermal effects may drive choice of flat-top vs. Gaussian beam shape in amplifiers
- Need gain of 10 or more (can multipass)
- Gain medium must support ps pulses

Uniformity of the pulse gains will be important

- Heating of the amplifier crystal over the train will create a linear phase ramp
- Pulse to pulse energy jitter will induce phase jitter and will make linear phase ramp more difficult to correct

 We have been evaluating various amplifier media to determine a good choice for creating a uniform output

Yb:YAG is an attractive gain medium for the photon collider laser

- Can achieve a gain of 1000 with bandwidth (1.5 nm) to support 1 ps pulses
 - Three stages with G \approx 10 to boost 50-µJ fiber output to 50 mJ
- Reduced thermal effects with pump at 940 nm, lasing at 1030 nm
- Other Yb hosts also possible: S-FAP, KYW, Sc₂O₃
- Basic three-level energetics model for final stage gives 50-mJ pulse train:
 - $\sigma_a = 0.76 \times 10^{-20} \text{ cm}^2$, $\sigma_s = 3.3 \times 10^{-20} \text{ cm}^2$, $\tau = 0.95 \text{ ms}$, 5-mJ input, room temperature
 - 2-cm long crystal, 1.5-cm diameter beams (flat-top) •

Lawrence Livermore National Laboratory

Option:UCRL#

19

A 1-mm slice of Yb:YAG increases ≈22°K during the 2-ms pulse train

The 1-mm slice can be cooled before the next pulse train

- Liquid cooling over slab faces with heat transfer coefficient h=1 W/cm²K
- Slab temperature equilibrates to 300K between pulses, coolant T=290K

Radial thermal differences during the pulse train and nonuniformities due to cooling geometry will need to be modeled

Thermal effects in the main amplifiers will have to be mitigated

Pulsed diode pumping in final amplifiers will change material index of refraction no

Linear phase:
$$\phi = \int k \, dz = \frac{2\pi}{\lambda} \int n(r,t) \, dz = \frac{2\pi n_o L}{\lambda}$$

dn/dT \approx 7x10⁻⁶ /°K , L = 6 cm (three pass) 1 λ (2 π rad) -> Δ T = 2.4 °K

Heating Yb:YAG with 200 J/bunch: $\Delta T=200 J/((0.59 J/gK)(4.56 g/cm^3)(3.4 cm^3))$ $\Delta T=22 \ ^{K} (9 \ \lambda)$

Phase modulator can potentially compensate thermal effects, assuming phase variation is spatially uniform

Reducing and compensating for the thermal loading in the final amplifiers will be our main laser challenge

Lawrence Livermore National Laboratory

For Yb:YAG:

Pulsed diode pumping will be required for the bulk amplifiers

Diodes: 40% eff.75 mJ/369 ns = 204 kW peak \Rightarrow 510 kW peak at \$5/peak W \Rightarrow \$2.5 M for diodes/drivers ~ 5100 bars at 100 W/bar

Lifetime $\approx 5 x 10^9$ shots = 31.7 years @ 5 Hz

Lawrence Livermore National Laboratory

The Mercury laser at LLNL uses four 80 kW diode arrays

for a total of 320 kW of peak diode power

Several current amplifier designs allow aggressive cooling of thin (~mm) slabs in kW-class systems

Textron ThinZag® amplifier

TRUMPF thin-disk laser

EdgeWave INNOSLAB laser

LLNL Mercury He gas cooling

Option:UCRL#

25

. b=10mm

Pulse Compression

- System will be in vacuum after compression
- Average power testing of Multi-Layer Dielectric (MLD) gratings:
 - 30 W/cm², no wavefront distortion
 - 100 kW/cm² small spot no damage
 - 30-60 ppm absorption (preliminary)
- High efficiency (>96%) gratings for linear polarization
 - Waveplate after compressor to make circular polarization

Vacuum compressor (Titan – LLNL)

World's largest dielectric gratings (LLNL)

Lawrence Livermore National Laboratory

Status and Outlook

- This activity is coming to an end
 - Completing thermal simulations
 - Producing documentation
- Conclusion is that generating a pulse train that can maintain the gain of the cavity is possible with available technology but maintaining phase stability is nontrivial
 - Will require prototyping and demonstration at some point
- Probably next steps should be to revisit the design of the MBI/Zeuthen cavity and layout the feedback and control system building on experience gained with Hiroshima and LAL 4-mirror cavities

