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Parton showers were developed in the 1980’s to model 
the properties of QCD jets over a large dynamic range.  
They are the basic ingredients of the Monte Carlo 
generators PYTHIA and HERWIG.

Today, there is a renewed interest in parton showers.  
For analyses at the LHC, we would like to exploit more 
subtle effects of QCD:  color correlations, spin dynamics.  
Can we produce parton showers that model these effects 
more accurately ?



The standard PYTHIA/HERWIG shower is based on a 
1 > 2 parton splitting.

The probability assigned to this splitting has the form

where P(z) is the Altarelli-Parisi function.  In the soft parton 
emission limit

The evolution spans a 2-dimensional space.  HERWIG covers this 
space with angular (  ) ordering.  PYTHIA uses pT ordering, but 
rejects emissions that do not satisfy angular ordering.
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Why angular ordering ?   This encodes color correlations.

We can think of QCD emissions as radiated from color dipoles. The 
radiation is large inside the dipole, and small outside the dipole 
where the color sources destructively interfere.



Another approach to modelling this physics is to use an 
antenna shower, that is, a shower in which the basic 
splitting is a 2 > 3 process

The  probability assigned to this splitting can be 
written 

where

In the soft limit.

This expression is the correct soft limit of a color 
dipole and thus incorporates color interference.
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Altarelli and Parisi wrote down spin-dependent splitting functions.

Recently, Larkoski and I worked out spin-dependent antenna 
splitting functions for use in antenna showers:

N (za, zb, zc) =



So far, all of these results are for all massless particles.

However, at the LHC we will have many energetic top quarks, and 
it will be interesting to study gluon radiation from top quarks.

How do we do this in an antenna framework ?



Massive Altarelli-Parisi splitting function
     (Catani-Dittmaier-Trocsanyi-Seymour)

To understand this, it is interesting to compare to the 
spin-dependent gluon emission amplitudes:
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Square and integrate with phase space and the massive 
denominator                          , with

and make use of

Then we find for the emission probability,

The first of these formulae is more illuminating.  There is an 
extra term specifically from helicity-flip emission, and it shows a 
“dead cone” for soft radiation from slow top quarks.
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Can we find analogous formulae in for antennae ?

Our strategy in the earlier paper was to consider the antenna as 
generated by a local operator.  Then the antenna splitting 
function is

to be integrated over 3-particle phase space.

By considering chiral operators and polarized 3-particle final 
states, we derive the spin-dependent splitting functions.

Q2

∣∣∣∣
M(O → 3)
M(O → 2)

∣∣∣∣
2



The computation of heavy quark amplitudes is easier if 
we use spinor products.  For heavy quarks, we use the 
Schwinn-Weinzierl representation of the massive spinors,

with

   is a massless reference vector.  It is most convenient to 
choose      to be the massless vector in the backwards 
direction to      .   We call this       .    Then

With this definition, the above spinors correspond to the 
standard helicity states.
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Analyze the simplest case of a       dipole, where q is a light 
quark.   This has spin 0 and spin 1 cases; I will do only the spin 0 
case.

The chiral local operator generating this dipole is           .  The 
2-body matrix elements                             are

Taking            ,  and recognizing that       is parallel to    , we 
have

Then we have the standard helicity rule that a spin zero state 
has only            and no            .
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Here are the 3-body matrix elements                                of this 
operator:

O → t(a)g(c)q(b)
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The splitting functions are given by these functions, multiplied 
by

The functions on the previous page are not simple, but they 
are not so difficult to evaluation.

The main problem is the presence of        and      .  However, 
we will generate phase space by working with massless vectors, 
balancing momentum, and then rescaling so that we have the 
correct energy including the top quark mass.  The vectors        
and        arise naturally as the massless vectors in this process.

Larkoski and I feel that this is a promising strategy for 
generating spin-aware antenna showers with top quarks.  Much 
work remains to be done.  Wish us luck !
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