

Study of top quark production in the semileptonic decay mode at the ILC

Philippe Doublet Roman Pöschl François Richard

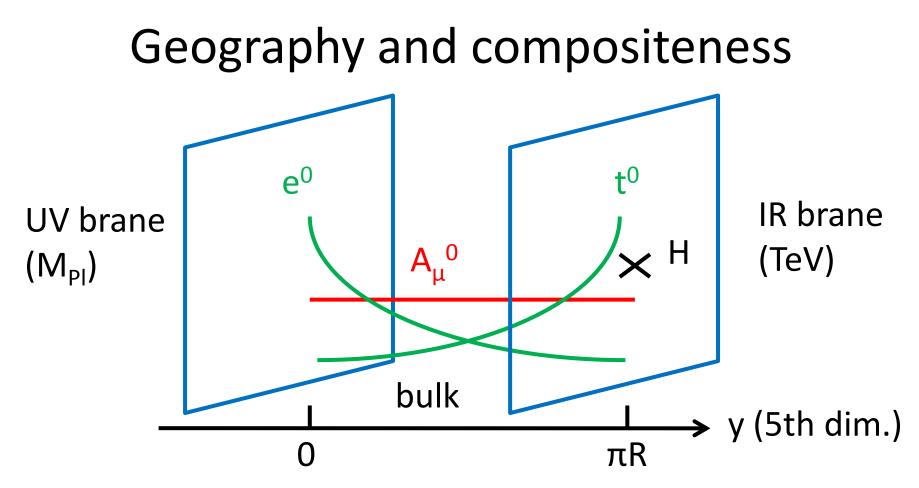
IWLC Geneva, October 2010

Plan

1. Motivation

2. Measurement method

3. Efficiencies

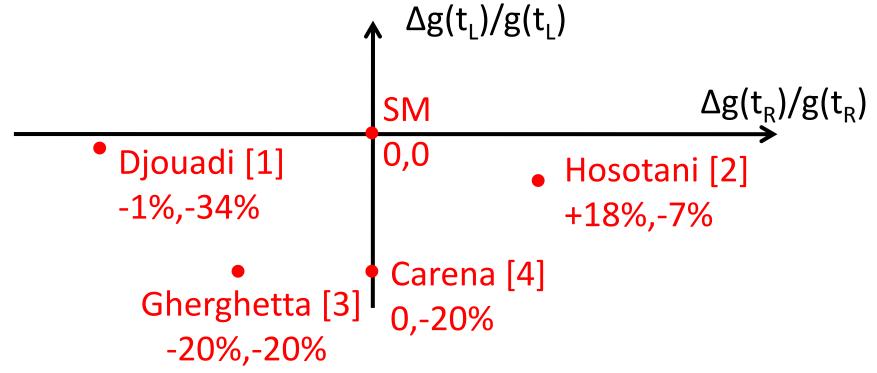

4. Results

The top quark and extra dimensions Geography and compositeness Top couplings

1. MOTIVATION

The top quark and extra dimensions

- Top quark : no hadronisation → clean and detailed observations
- Randal Sundrum models with extra dimensions provide an elegant way to address the hierarchy problem
- A geographical interpretation of Yukawa couplings is given
- These models can be seen as dual to composite models (AdS/CFT correspondence)
- In these models, the top quark and the Higgs are composite objects



- Higgs on IR brane for gauge hierarchy problem
- SM fermions have different locations along the 5th dimension
- Overlaps leptons Higgs in the 5th dimension generate good Yukawa couplings with O(1) localisation parameters

IWLC Geneva, October 2010

Top couplings

• Several RS models predict modified left $g_Z(t_L)$ and right $g_Z(t_R)$ top couplings to Z (via Z-Z_{KK} mixing)

Observables

Top quark cross section

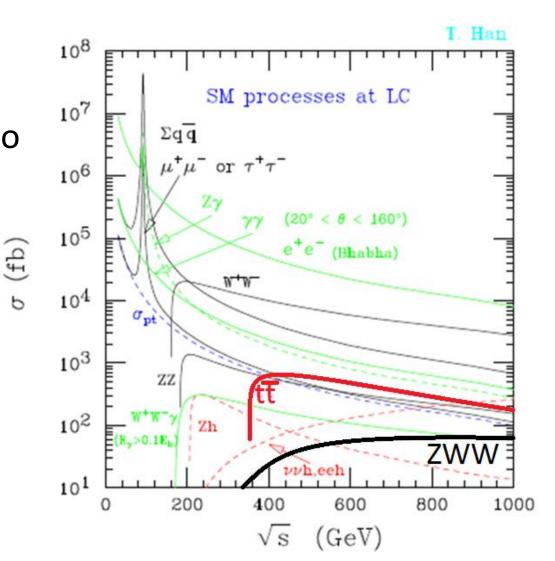
Measurement with the ILD detector

Reconstruction whithin the ILD framework

Requirements

Method adopted

2. MEASUREMENT METHOD

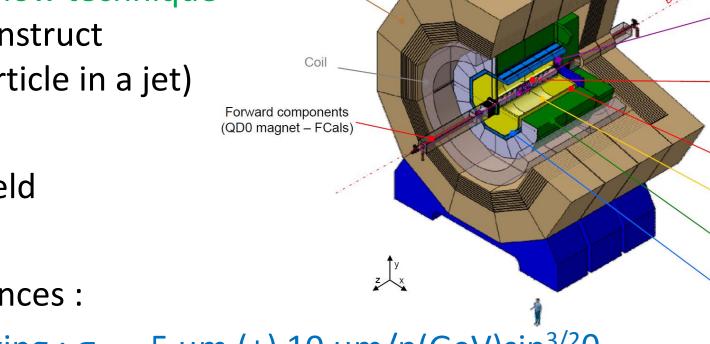

Observables

- Our goal : measure $g_7(t_1)$ and $g_7(t_R)$ precisely
- Use of the simulation for the ILD detector at the ILC (1000fb⁻¹) : top produced at 500 GeV
- How : measure $\sigma(tt)$, A_{IR} and A_{FR}
- From A_{IR} and A_{FR} , one deduces $g_7(t_1)$ and $g_7(t_R)$ couplings
- Semileptonic decay mode : $tt \rightarrow (bW)(bW) \rightarrow (bqq)(blv)$ Gives top charge IWLC Geneva, October 2010

Allows reconstruction of the top quark

Top quark cross section

- σ(tt) ≈ 600 fb at 500 GeV (≈ 180 fb for SL top into e and μ)
- Major background : ZWW (Z→bb) ≈ 8 fb, same topology
- Almost background free



Measurement with the ILD detector

Return Yoke

- ILD optimised for Particle Flow technique (i.e. reconstruct every particle in a jet)
- 3.5 T B-field
- Performances :
 - Vertexing : $\sigma_{IP} = 5 \mu m$ (+) 10 $\mu m/p(GeV)sin^{3/2}\theta$
 - Tracking : $\sigma(1/p_T) < 5.10^{-5} \text{ GeV}^{-1}$
 - Granular calorimetry : $\sigma_E / E = 30\% / VE$

IWLC Geneva, October 2010

VTX

SIT FTD

SET

HCal

ECal

Reconstruction whithin the ILD framework

- tt→(bW)(bW)→(bqq)(blv) = semileptonic decay mode
- 1000 fb⁻¹ were generated with Whizard (6f final states e.g. bbcsev_e)
- Full simulation is done with the ILD detector under GEANT4 (Mokka software)
- « Objects » reconstructed with Particle Flow algorithm (Pandora)
- Data used : samples prepared for the LOIs

Requirements

- $tt \rightarrow bbqqlv (l=e,\mu)$
 - Need at least 1 b jet (vertex)
 - Find 1 lepton (tracking)
- Method :
 - Find a lepton
 - Force 4 jets clustering
 - Find at least 1 (or 2) b jets
 - Form the top with one b jet + 2 non-b jets left,
 lepton charge gives the opposite sign of the top

Method adopted

- In this talk :
 - Review of lepton selection efficiency
 - Major backgrounds discussed : ZWW, tt \rightarrow bbqqtv

- Full study for later :
 - Hadronic top (not checked yet)
 - Add all other backgrounds (purity)
 - Report on systematics of the observables

Identification of leptons

Isolation

Efficiencies and purities of the selected lepton

Efficiencies : angular and energetic

3. EFFICIENCIES

Indentification of leptons

Particle	Momentum cut	Identification	Rejection
Muon		$E_{calo}/P_{track} < 0.5$	0.7%
Electron	5 GeV	$E_{calo}/P_{track} > 0.8$ and $E_{ecal}/E_{calo} > 0.9$	2.1%

- Rather loose cuts :
 - Muon often picks a small pion cluster in the calorimeters
 - Same for electron / photon
- Impose isolation criteria for lepton inside its jet

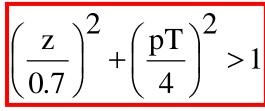
Isolation

- In reconstructed events, look at the true (MC) lepton :
- True lepton embedded Events forced to 4 jets inside a jet - tt \rightarrow bbqqlv : 4 jets + 1 lepton Define : N 0.9 $- z = E_{lepton}/E_{closest jet}$ 0.8 pT in the closest jet 0.7 Lepton is : 0.6 0.5 1. Leading (high z) 0.4 2. Or isolated (high pT) 0.3 0.2 3. Not leading 0.1 or isolated O(1% 20 10 15 5

pT (GeV)

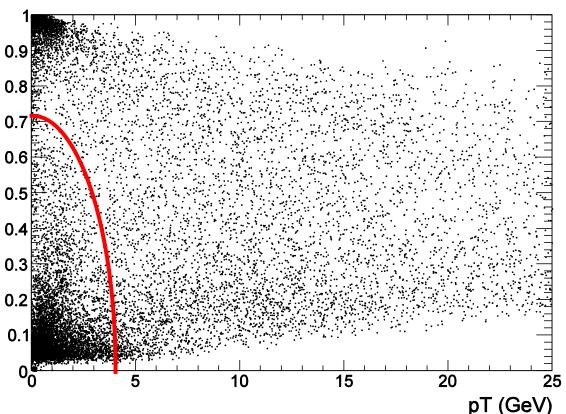
Isolation

• Same view for identified leptons (muons here)


N

- Isolation criteria :
- + highest z

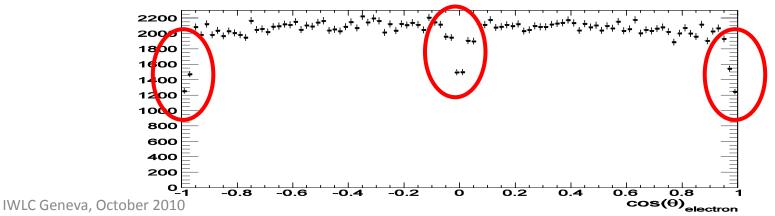
(if N_{leptons}>1)


Particle	Events left
Muon	94.4 %
Electron	93.5 %

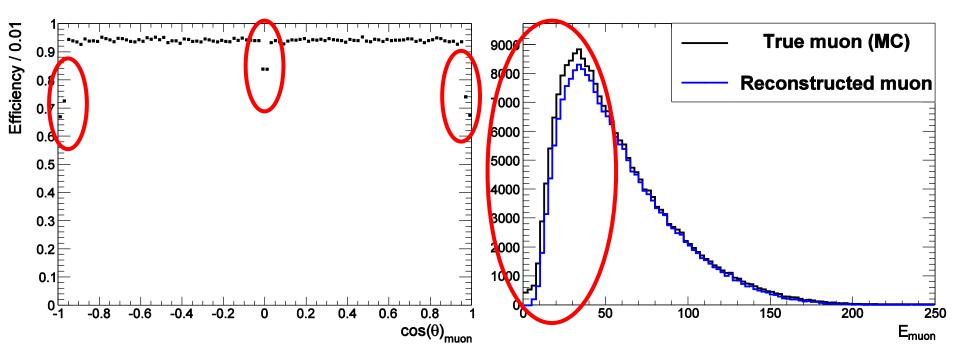
Remark : study done with perfect tracking → best efficiency achievable

(rejects $B \rightarrow IvX$,

and mis-ids)


IWLC Geneva, October 2010

Efficiencies and purities of the lepton


Particle	P « good » (W _{top} →lv)	P « bad » (mis-id)	Events found	Bad leptons
Muon	92.6 %	6.9 %	93.0 %	1.2 %
Electron	87.7 %	9.2 %	88.8 %	2.2 %

Tracking inefficiencies :

- Muon = 94.4 % 92.6 % = 1.8 % ($|\cos \theta| > 0.97$)
- Electron = 93.5 % 87.7 % = 5.8 % (TPC disk, | cos θ| >0.97)

Efficiencies : angular and energetic

- Effiencies under control :
 - Tracking worse at large angles and in the TPC disk
 - Leptons with small energies are suppressed by isolation

Results Cross section and A_{LR} Conclusions and prospects

4. RESULTS

IWLC Geneva, October 2010

Results

- Simulation done with full e⁺e⁻ polarisation
 i.e. P(e⁺e⁻)=(±1, ±1) → P(e⁺e⁻)=(±30%, ±80%)
- ZWW is very small (< 1%) :
 - can be measured : veto on b (Z \rightarrow uu, dd, ss, cc)
 - and substracted
- Comment on $tt \rightarrow bbqq\tau v$:
 - Lepton of $\tau \rightarrow$ lvv decay reconstructed ($\approx 35\%$ of τ events)
 - Adds statistics for $\sigma(tt)$, A_{LR} and A_{FB} (where hadronic top direction will be reconstructed)

Cross-section and A_{LR}

• $\sigma = N/(\epsilon L)$, L = 500fb⁻¹

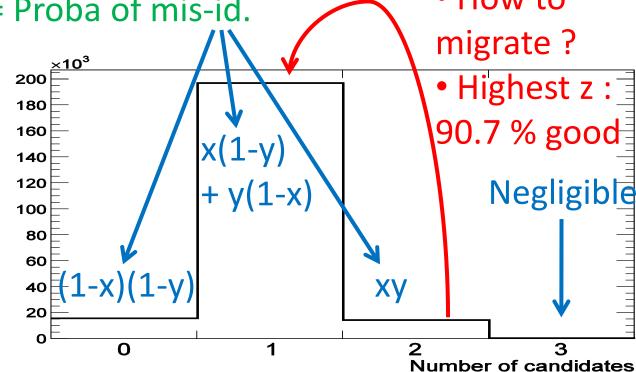
- $\sigma(tt \rightarrow SL)_{unpol.} = 159.4 \text{ fb}, \Delta\sigma/\sigma = 0.37\% \text{ (stat.)}$ - Whizard : $\sigma(tt \rightarrow SL)_{unpol.} = 159.6 \text{ fb} (-0.1\%)$ - P(e⁺e⁻)= (±30\%, ±80%) $\rightarrow \Delta\sigma/\sigma = 0.28\%/0.42\%$ (stat.)
- $A_{LR} = 0.435$, $\Delta A_{LR} / A_{LR} = 0.54\%$ (stat.)
 - $-A_{LR} = 0.37$ expected... Whizard problem ?
 - However, interest lies in relative uncertainty

 $- P(e^+e^-) = (\pm 30\%, \pm 80\%) \rightarrow \Delta A_{LR}/A_{LR} = 0.69\%$ (stat.)

Conclusion and prospects

- To find a lepton (e,μ) in a semileptonic environment efficiency > 88%, purity > 98%
- Major backgrounds seem under control (ZWW and tt \rightarrow bbqqtv)
 - Further checks of backgrounds e.g. top full hadronic decays needed
- σ and A_{LR} can be known at 0.4% and 0.7% statistical uncertainty (systematics guaranteed small due to large purity)
- One step beyond : reconstruct the hadronic top quark to measure $A_{\mbox{\tiny FB}},\,m_{\mbox{\tiny top}}$
- Next : add background and check purity (cut based analysis foreseen)

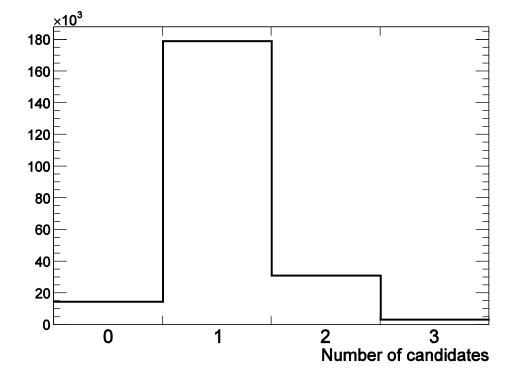
IWLC Geneva, October 2010


Extract efficiency and purity of the selected lepton Adding electrons and muons Top physics : LHC and ILC Angular distribution : top vs lepton Finding ZWW in bbqqlv events Comparative distributions ZWW/tt Semileptonic taus : tt → bbqqtv Full hadronic tops Top couplings : bibliography

5. ADDITIONAL MATERIAL

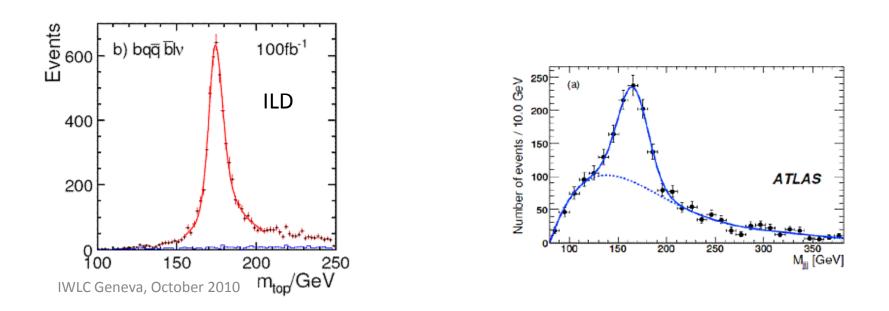
Extract efficiency and purity of the selected lepton

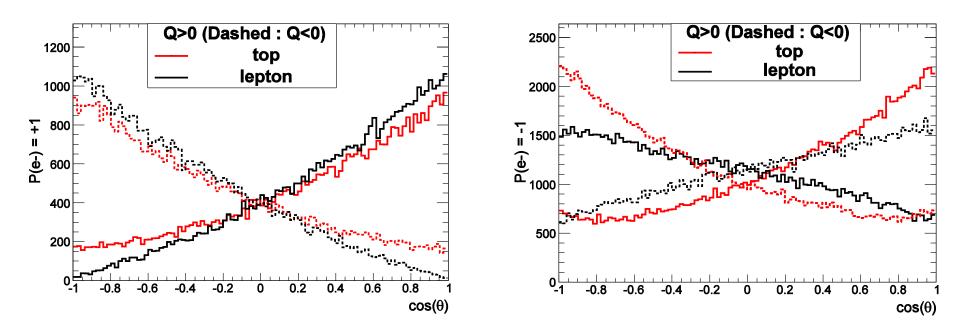
- Count number of selected leptons with the previous criteria (at reconstructed level)
- We define x = Proba of good lepton chosen
 y = Proba of mis-id.
 x = 92.6%
- y = 6.9%


After
migration :
1.2 % of bad
muons

IWLC Geneva, October 2010

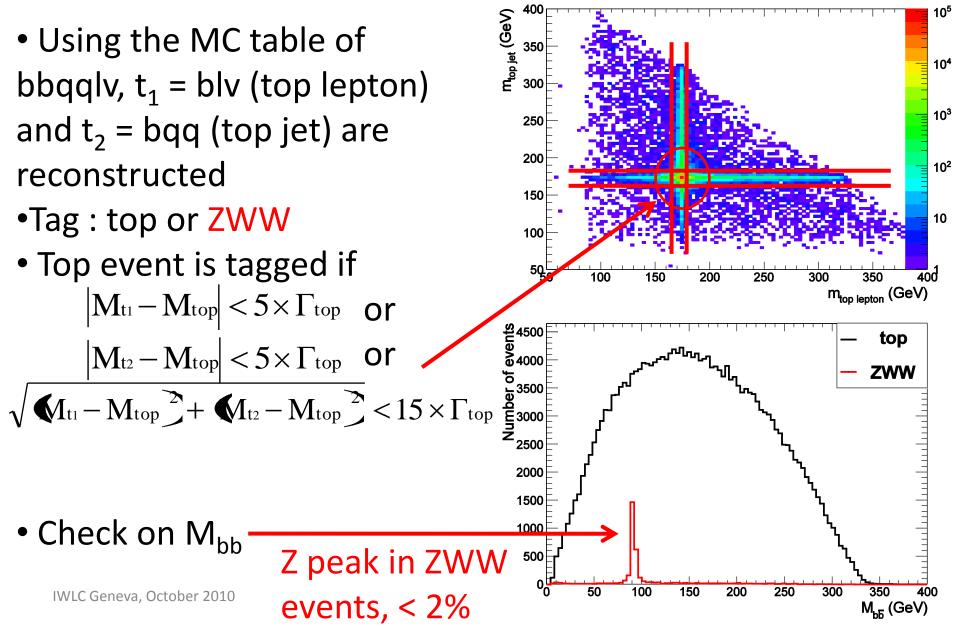
Adding electrons and muons


- Now : take any kind of lepton
 - highest z candidate
 among indentified
 muons and electrons
- Efficiency expected higher, but purity should decrease

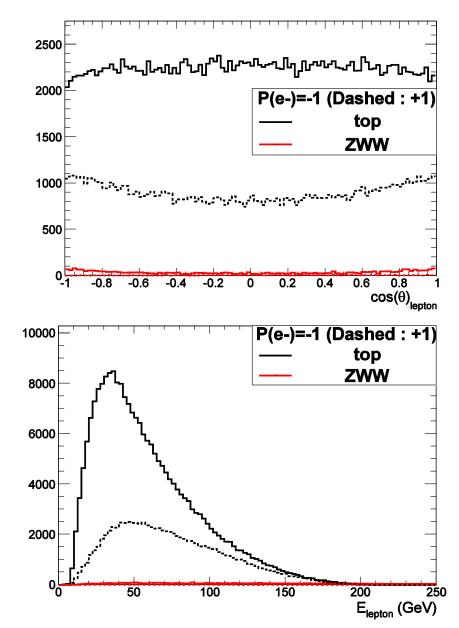

Particle	Efficiency	Bad lepton	Purity
Muon	93.6%	2.9%	97.1%
Electron	89.7%	3.9%	96.1%

Top physics : LHC and ILC

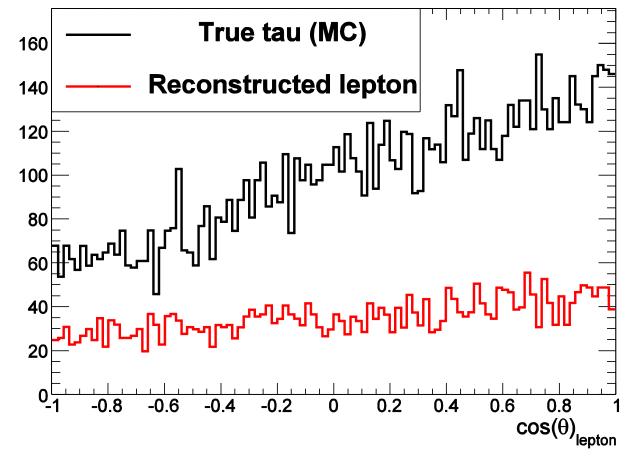
- LC 1 pb, LHC 1nb but for gluon couplings only
- Very good s/b at ILC and energy/momentum conservation allows to reconstruct modes with a neutrino
- Mt and Γ t with \approx 50 MeV error, 0.4% on cross section
- LC unique to measure t_R and t_L Z couplings at % (ND>4) LHC > 10 times worse



Angular distribution : top vs lepton

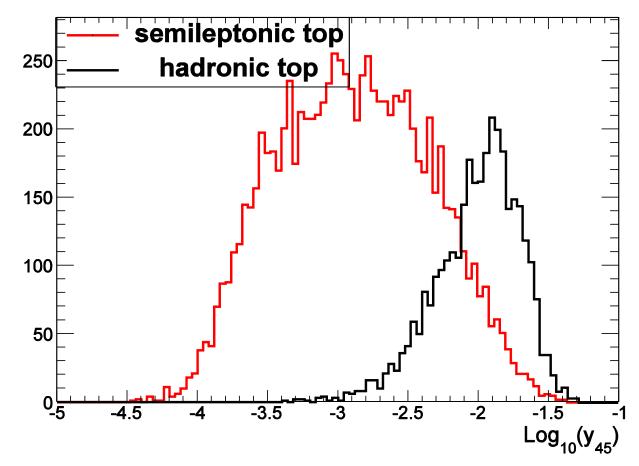

- For $P(e^{-}) = +1$ (e_{R}^{-}) : correlation between directions of the lepton and its top
- For $P(e^{-}) = -1 (e^{-}_{L})$: anticorrelation

Finding ZWW in bbqqlv events



Comparative distributions : ZWW/tt

- At MC level, top and ZWW events are separated
- Lepton distributions :
 - Angular
 - Energetic
- ZWW clearly negligible
- Needs to be substracted to reach permil precision



Semileptonic taus : tt \rightarrow bbqq τ v

- A lepton is found in 1/3 of semileptonic tau events
- Adds statistics for measurements but cannot use lepton

Full hadronic tops

• Yout expected to be enough to separate semileptonic tops from hadronic ones... Maybe not enough. Try y_{56} .

Top couplings : bibliography

- [1] : Djouadi et al., Nuclear Physics B, Volume 773, Issues 1-2, 25 June 2007, Pages 43-64
- [2] : Hosotani et al., Prog. Theor. Phys. 123 (2010), 757-790
- [3] : Cui, Gherghetta et al., arXiv:1006.3322v1 [hepph]
- [4]: Carena et al., Nuclear Physics B
 Volume 759, Issues 1-2, 18 December 2006, Pages 202-227