IP feedback design status

Philip Burrows

John Adams Institute

Oxford University

Feedback On Nanosecond Timescales

2

Beam-based FB R&D for future Linear Colliders

Philip Burrows Glenn Christian Hamid Dabiri Khah Javier Resta Lopez Colin Perry

Graduate students: *Christina Swinson* Ben Constance Robert Apsimon Douglas Bett Alexander Gerbershagen Michael Davis

Valencia, CERN, DESY, KEK, SLAC Philip Burrows

Outline

- Brief reminder of intra-train feedback system
- Implementation in ILC + CLIC IRs
- Prototype hardware development (FONT systems)
- Summary

IP intra-train feedback system - concept

FONT – Feedback On Nanosecond Timescales

(Oxford, Valencia, CERN, DESY, KEK, SLAC)

Philip Burrows

IWLC10, Geneva 21/10/10

General considerations (1)

1. IP position feedback:

hardware located near IP kicker at 90 degrees w.r.t. IP

2. IP angle feedback:

hardware ideally located near IP kicker in phase w.r.t. IP

3. Additional possible inputs:

fast luminosity signal (from BEAMCAL) information from alignment systems (eg. QD0 etc.) 'feed-forward' information from upstream in machine (eg. DR)

. . .

General considerations (2)

Time structure of bunch train:

ILC (500 GeV):	C.	3000	bunches	W. C.	300 ns	separation
CLIC (3 TeV):	С.	300	bunches	w. c.	0.5 ns	separation

Feedback latency:

ILC: O(100ns) latency budget allows digital approach CLIC: O(10ns) latency requires analogue approach

Recall speed of light: c = 30 cm / ns:

FB hardware should be close to IP (especially for CLIC!)

IP position feedback latency

Latency:

1. Beam flight time IP \rightarrow BPM

- 2. Signal processing, FB calculation
- 3. Amplifier + kicker response time
- 4. Cable delays
- 5. Beam flight time kicker \rightarrow IP

Philip Burrows

ILC IR: SiD for illustration

Philip Burrows

Final Doublet Region (SiD for illustration)

Final Doublet Region (SiD for illustration)

CLIC: ILD for illustration

CLIC: ILD for illustration

CLIC: zoom-in to QD0

CLIC: zoom-in to QD0

Herve 22/2/10

IWLC10, Geneva 21/10/10

Philip Burrows 4 Dec. 2009 8th MDI meeting

CLIC: zoom-in to QD0

Herve 22/2/10

IWLC10, Geneva 21/10/10

Philip Burrows 4 Dec. 2009 8th MDI meeting

Prototyping status

Generic prototype layout

Brief prototype history: CLIC

CLIC-relevant: all-analogue systems

Generic prototype layout: CLIC

Brief prototype history: CLIC

CLIC-relevant: all-analogue systems

NLCTA (SLAC): 65 MeV beam, 170ns train, 87ps bunch spacing

FONT1 (2001-2): First demonstration of closed-loop FB: latency 67ns 10/1 beam position correction

FONT2 (2003-4): Improved demonstration of FB: latency 54ns

> real time charge normalisation with logarithmic amplifiers beam flattener to straighten train profile solid-state amplifier

ATF (KEK): 1.3 GeV beam, 56ns train, 2.8ns bunch spacing

FONT3 (2004-5): Ultra-fast demonstration of FB: latency 23 ns 3 stripline BPMs high-power solid-state amplifier

Philip Burrows

IWLC10, Geneva 21/10/10

FONT2 beamline installation at SLAC NLCTA (65 MeV 170ns-long train @ 87ns spacing)

FONT: kicker driver amplifiers

FONT1 3-stage tube amplifier

FONT3 PCB amplifer + FB

Philip Burrows

Same drive power as needed for CLIC

IWLC10, Geneva 21/10/10

FONT2 results

Philip Burrows

IWLC10, Geneva 21/10/10

FONT3: latency budget

•	Time of flight kicker – BPM:	4ns
•	Signal return time BPM – kicker:	6ns
	Irreducible latency:	10ns
•	BPM processor:	5ns
•	Amplifier + FB:	5ns
	Electronics latency:	10ns

• Total latency budget: 20ns

Allows 56/20 = 2.8 periods during bunchtrain

FONT3: BPM processor + amplifier/feedback installation in ATF beamline

BPM processor board

Philip Burrows

FONT3: Beamline Installation

Fast analogue signal processors

2005

2006

2007

IWLC10, Geneva 21/10/10

FONT3: Results (June 3 2005): Delay-loop feedback w. latency 23 ns

CLIC prototype: Summary

Brief prototype history: ILC

ILC-relevant: digital feedback processor

Generic prototype layout: ILC

Brief prototype history: ILC

ILC-relevant: digital feedback processor

ATF (KEK): 1.3 GeV beam, 3-bunch train, bunch spacing c. 150ns

FONT4 / ATF (2006-9): First digital system (Virtex 4): latency 148 ns high-power solid-state amplifier (pulse length up to 10us)

FONT5 / ATF2 (2009-10): Faster system (Virtex 5): latency 133 ns coupled-loop system correction of y and y' 3 BPMs and 2 kickers

FONT4 ILC prototype at KEK/ATF

Philip Burrows

IWLC10, Geneva 21/10/10

• FONT4 basic operation demonstrated in 2008 running:

FONT4 results

• FONT4 basic operation demonstrated in 2008 running:

IWLC10, Geneva 21/10/10

FONT4 results

• FONT4 basic operation demonstrated in 2008 running:

beam feedback along single axis (y) with few micron resolution

Philip Burrows

FONT5 location

Philip Burrows

IWLC10, Geneva 21/10/10

Flexible operation mode

FONT5 hardware

3 new BPMs and 2 new kickers installed in new ATF2 extraction line February 2009

Valencia FONT BPM movers

New FONT5 digital FB board

Xilinx Virtex5 FPGA

9 ADC input channels (TI ADS5474)

4 DAC output channels (AD9744)

Clocked at 357 MHz phase-locked to beam

4x faster than FONT4

FONT5 DAQ

- One damping ring cycle (463ns) data returned each pulse:
- RS232 over ethernet
- All BPM sum (charge) and difference signals
- Absolute sample time adjustable in 70ps taps: accurate peak sampling
- Ratio of difference to sum peaks gives y-position
- Pedestal subtraction
 w. on-board trim DACs
 (no latency gain)

Philip Burrows

FONT5 latency: P2 → K1 loop (February 2010)

Latency estimate

•	Time of flight kicker – BPM:	12ns
•	Signal return time BPM – kicker:	32ns
	Irreducible latency:	44ns
•	BPM processor:	10ns
•	ADC/DAC (4.5 357 MHz cycles)	14ns
•	Signal processing (8 357 MHz cycles)	22ns
•	FPGA i/o	3ns
•	Amplifier	35ns
•	Kicker fill time	3ns
	Electronics latency:	87ns
•	Total latency budget:	131ns

P2 → K1 loop performance (February 2010)

P2 → K1 loop performance (February 2010)

P2 → K1 loop jitter reduction (April 2010)

Bunch 1 Bunch 2 Bunch 3

2.1 um \rightarrow 0.4 um \rightarrow 0.8 um

Factor of 5 jitter reduction

Jitter comparison at ATF2 IP

Assuming perfect lattice, no further imperfections (!)

Coupled loop jitter reduction (May 2010)

- IP feedback concept well advanced
- Conceptually-engineered designs for ILC + CLIC
- All-analogue prototypes (CLIC) developed and tested at NLCTA + ATF:

→ electronics latency c. 13ns

 Digital prototypes developed and tested at ATF + ATF2:

→ electronics latency c. 90ns

• To do: real engineering + component optimisation radiation hardness, EM interference ...

Philip Burrows